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On scientific understanding with artificial intelligence
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Imagine an oracle that correctly predicts the outcome of every particle physics experiment, the
products of every chemical reaction, or the function of every protein. Such an oracle would revolu-
tionize science and technology as we know them. However, as scientists, we would not be satisfied
with the oracle itself. We want more. We want to comprehend how the oracle conceived these
predictions. This feat, denoted as scientific understanding, has frequently been recognized as the
essential aim of science. Now, the ever-growing power of computers and artificial intelligence poses
one ultimate question: How can advanced artificial systems contribute to scientific understanding
or achieve it autonomously?

We are convinced that this is not a mere technical question but lies at the core of science. There-
fore, here we set out to answer where we are and where we can go from here. We first seek advice
from the philosophy of science to understand scientific understanding. Then we review the current
state of the art, both from literature and by collecting dozens of anecdotes from scientists about how
they acquired new conceptual understanding with the help of computers. Those combined insights
help us to define three dimensions of android-assisted scientific understanding: The android as a I)
computational microscope, II) resource of inspiration and the ultimate, not yet existent III) agent
of understanding. For each dimension, we explain new avenues to push beyond the status quo and
unleash the full power of artificial intelligence’s contribution to the central aim of science. We hope
our perspective inspires and focuses research towards androids that get new scientific understanding
and ultimately bring us closer to true artificial scientists.

I. INTRODUCTION

Artificial Intelligence (A.I.) has recently been called
a “new tool in the box for scientists” [T] and that “ma-
chine learning with artificial networks is revolutioniz-
ing science“[2]. Additionally, it has been conjectured
“that machines could have a significantly more cre-
ative role in future research.” [3]. For instance, it has
even been postulated that “[tJhe new goal of theoret-
ical chemistry should be that of providing access to
a chemical ’oracle’> an A.l. environment which can
help humans solve problems, associated with the fun-
damental chemical questions of the fourth industrial
revolution [...], in a way such that the human cannot
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distinguish between this and communicating with a
human expert” [4].

However, this excitement has not been shared
among all scientists. Specifically, it has been ques-
tioned whether advanced computational approaches
can go beyond numerics [5HI] and contribute funda-
mentally to one of the essential aims of science, that
is, gaining of new scientific understanding [T0HI2].

In this work, we address how artificial systems can
contribute to scientific understanding — specifically,
what is the state-of-the-art and how we can push fur-
ther. Besides a thorough literature review, we sur-
veyed dozens of scientists at the interface of biol-
ogy, chemistry or physics on the one hand, and arti-
ficial intelligence and advanced computational meth-
ods. These personal narratives focus on the concrete
discovery process of ideas and are a vital augmenta-
tion to the scientific literature. We put the literature
and personal accounts in the context of a philosophi-
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Figure 1. How can Androids contribute to new scientific understanding? In addition to scientific literature,
we take inspiration from the philosophy of science and from dozens of stories provided by active computational natural
scientists. Thereby we identify three fundamental dimensions of computer-assisted scientific understanding. From there,
we look into the future and develop a roadmap on how to develop Androids that can contribute to understanding — the

essential aim of science.

cal theory of Scientific Understanding recently devel-
oped by Dennis Dieks and Henk de Regt [12} [13], who
was awarded the Lakatos Award in 2019 for the de-
velopment of this theory. We thereby introduce three
fundamental dimensions for scientific androiddY con-
tribution towards new scientific understanding:

I) Androids acting as a microscope in the re-
sponses, i.e., akin to an instrument revealing
properties of a physical system that are other-
wise difficult or even impossible to probe. Hu-
mans then lift these insights to scientific under-
standing.

IT) Androids acting as muses, i.e., sources of inspi-
ration for new concepts and ideas that are sub-
sequently understood and generalized by human
scientists.

1We encapsulate all advanced artificial computational systems

under androids, independent of their working principles. In
this way, we are focusing on the operational objective rather
than the methodology.

IIT) Lastly, in an ultimate dimension of android-
assisted scientific understanding, computers are
the agents of understanding. While we have not
found any evidence of computers acting as true
agents of understanding in science yet, we out-
line important characteristics of such an artifi-
cial system of the future and potential ways to
achieve it.

In the first two dimensions, the android enables hu-
mans to gain new scientific understanding while in the
last one the machine gains understanding itself. These
classes enable us to layout a vibrant and mostly unex-
plored field of research, which will hopefully manifest
itself as a guiding star for future developments of ar-
tificial intelligence in the natural sciences.

The goal of this perspective is to put Scientific
Understanding back to the limelight — where we are
convinced it belongs. We hope to inspire physicists,
chemists and biologists and A.I. researchers to go be-
yond the status quo, focus on these central aims of
science, and revolutionize computer-assisted scientific
understanding. In that way, we believe that androids



will become true agents of understanding that con-
tribute to science in a fundamental and creative way.

II. SCIENTIFIC UNDERSTANDING

Let us imagine an oracle providing non-trivial pre-
dictions that are always true. While such a hypo-
thetical system would have a very significant scien-
tific impact, scientists would not be satisfied. We
want “to be able to grasp how the predictions are gen-
erated, and to develop a feeling for the consequences
in concrete situations” [I3]. Colloquially, we refer to
this goal as “understanding” — But what does that
really mean? Can we find criteria for scientific under-
standing? To do that, we seek guidance from the field
of philosophy of science. Notably, while hardly any
scientist would argue against “understanding” as an
essential aim of science (next to explanation, descrip-
tion and prediction [14]), this view was not always
accepted by philosophers. Specifically, Carl Hempel,
who made foundational contributions clarifying the
meaning of scientific explanation, argued that “un-
derstanding” is subjective and merely a psychologi-
cal by-product of scientific activity and is therefore
not relevant for the philosophy of science [I5]. Other
philosophers criticized these rather unsatisfying con-
clusions, and they tried to formalize what scientific
understanding means. Proposals include that under-
standing is connected to the ability to build causal
models (Lord Kelvin said “It seems to me that the
test of ’Do we or not understand a particular subject
in physics?’ is, ’Can we make a mechanical model
of it?> ”[13]), connected to providing visualizations
(or Anschaulichkeit, as its strong proponent Erwin
Schrodinger called it[16, [17]) or that understanding
corresponds to providing unification [I8] [19)].

In recent years, Henk de Regt and Dennis Dieks
have developed a new theory of scientific understand-
ing, which is both contextual and pragmatic [12H14].
Importantly, they find that techniques such as visu-
alization or unification are “tools for understanding”,
thereby unifying previous ideas in one general frame-
work. Their theory is agnostic to the specific “tool”
being used, making it particularly useful for applica-
tion in scientific disciplines. They extend crucial in-
sights by Werner Heisenberg [20] and rather than in-
troducing mere theoretical or hypothetical ideas, the
main motivation behind their theory is that a “satis-
factory conception of scientific understanding should
reflect the actual (contemporary and historical) prac-
tice of Science”. Put simply, they argue that:

A phenomenon P can be understood if there
exists an intelligible theory T of P such that
scientists can recognise qualitatively charac-
teristic consequences of T without performing
exact calculations [12] [13].

Concretely, de Regt and Dieks define two inter-
linked criteria:

1. Criterion of Understanding Phenomena:
A phenomenon P can be understood if a theory
T of P exists that is intelligible.

2. Criterion for the Intelligibility of Theo-
ries: A scientific theory T is intelligible for sci-
entists (in context C) if they can recognise qual-
itatively characteristic consequences of T with-
out performing exact calculations.

We decided to use this specific theory because of
one particular strength: We can use it experimen-
tally to evaluate whether scientists have understood
new concepts or ideas, rather than by inspecting their
methodology, by simply looking at the scientific out-
come and the consequences. This also coincides with
Angelika Potochnik’s argument that “understanding
requires successful mastery, in some sense, of the tar-
get of understanding” [11]. We will follow this ap-
proach and, consequently, here explore its relationship
to the role of A.IL in science. Accordingly, we believe
we can significantly advance A.I.’s contribution to this
central aim of Science if we have a clear picture of
how scientists gain conceptual understanding, and in-
stil it to artificial systems afterwards. We approach
this goal by applying ideas of de Regt and Dieks di-
rectly to android assisted science (and ultimately, to
android scientists themselves).

III. WHAT IS NEXT?
A. Beyond Re-Discovery

In recent years, scientists at the interface between
A.I. and the natural sciences tried to rediscover scien-
tific laws or concepts with machines. The question is,
however, whether an android is capable of contribut-
ing to new scientific understanding if it can rediscovers
physical laws and concepts, such as the heliocentric
world view [2I], the arrow of time [22] or mechani-
cal equations of motions [23]?7 We believe that this
is not guaranteed. The human creators of these an-
droids know what they are looking for in these case
studies. Therefore, it is unclear how both conscious
and unconscious biases (in the broadest sense, e.g., by
choosing particular representations) in the code or the
data analysis can be prevented. Consequently, even if
an algorithm can rediscover interesting physical phe-
nomena, we cannot know whether and how they can
be used to advance Science by helping to uncover new
scientific understanding.

Hence, we believe we need to go beyond rediscovery
tasks. Therefore we focus explicitly on the question
of how to get mew scientific understanding.



B. Beyond Discovery

Importantly, other central aims of science such as
prediction and discovery can lead to scientific and
technological disruptions while not directly contribut-
ing to scientific understanding as discussed above
[11, 14]. For instance, imagine the hypothetical dis-
covery of the hitherto best material for energy stor-
age that could revolutionize batteries. However, this
game-changing discovery would not qualify as under-
standing if chemists could not use the underlying prin-
ciples fruitfully in other contexts (without computa-
tion).

Similarly, the recent breakthrough in protein fold-
ing will undoubtedly change the landscape of biochem-
istry. However, so far, AlphaFold is a black box — an
oracle[24], 25]. As such it does not directly provide
new scientific understanding in the sense of de Regt
and Dieks (but could of course in the future enable
humans to gain new scientific understanding). Hence,
we believe we must go beyond artificial discoveries in
science.

C. Where to go from here?

The ultimate goal is to get new understanding from
androids. Loosely speaking, we want to find new ideas
or concepts that we can apply and use in different
situations without (complete) computations.

This article aims to explain precisely what such
a goal requires, what previous approaches have
achieved, and how we can go further. We want to
clearly lay out this underappreciated but essential re-
search question and thereby give a clear goal for the
future of A.L. in the natural sciences.

IV. THREE DIMENSIONS OF
COMPUTER-ASSISTED UNDERSTANDING

We use scientific literature and personal anecdotes
of dozens of scientists, and the context of the philos-
ophy of science, to introduce a new classification of
androids contribution to scientific understandingﬂ It
helps to see diverse unexplored journeys that can be
investigated in the future.

An android can act

I) as a computational microscope, providing in-
formation not (yet) attainable by experiment

IT) as a resource of inspiration or an artificial
muse, expanding the scope of human imagina-
tion and creativity.

2We call the classification dimensions, as they are independent
and non-exclusive.

In those two classes, the human scientist is essential
to take the new insight and inspiration and develop it
to full understanding. Finally, an android can be

IIT) an agent of understanding, replacing the hu-
man in generalizing observations and transfer-
ring scientific concepts to new phenomena.

We stress that these three classes should not be un-
derstood dogmatically but rather guide future possi-
bilities. In the following sections, based on concrete
examples, we discuss each class in more detail and pro-
pose avenues for pushing the boundaries of the current
computational faculties.

A. Computational microscope for scientific
understanding

Microscopes are devices that enable us to inves-
tigate objects and phenomena imperceptible to the
naked eye. In a similar way, computational micro-
scopes enable the investigation of objects or processes
that we cannot visualize or probe in any other way.
One main objective is to simulate biological, chemical
or physical processes that happen at length and time
scales not perceivable by experiment.

As we are interested in understanding, the new
computer-generated data needs to be generalized to
other contexts without complete computation[I3]. We
show now two concrete examples.

The first example is molecular dynamics simulations
of the SARS-CoV-2. The authors uncovered new bio-
logical functions that show different behaviours in the
open and closed conformations of the spike protein.
This explanation changed the view upon glycans in
biological systems and inspired new ways to analyze
these systems without the need to perform full com-
putations [20].

In the second example, the authors describe how
molecular dynamics simulations helped to uncover
fundamental patterns called glycoblocks. The sys-
tematic use of glycoblocks can both be used to un-
derstand sequence-structure-property relationships of
biomolecules and can also inform the design of syn-
thetic structures with desired functions without the
need for simulating the entire system [27].

The next computational microscope

A computational microscope aims to provide data
via computation that are not (yet) accessible by ex-
periments that humans can understand. How could
we make computational microscopes even more in-
sightful and make it easier for human scientists to use
this data to gain scientific understanding? There are
two vibrant directions going forwards. First, more ad-
vanced computational systems will allow to analyze of
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We envision two types of advances in the next-generation

computational microscopes which aim to advance genuine scientific understanding. First (left), larger and more complex
computations will allow the computational observation of phenomena not accessible so far. There, new computational
paradigms will play a significant role, such as Graphical Processor Units (GPU), Tensor Processor Units (TPU), Optical
Processor Units (OPU) and — ultimately — quantum computers. Second (right), new ways to represent the highly complex
data will advance our ability to sense structure and recognize underlying patterns. The involvement of all our senses
could, for sensing computer-generated data, be an exciting pathway to advanced understanding.

more complex physical systems. Second, representing
the information in a more interpretable way will help
to lift the indications from computers to true scientific
understanding.

More Complex Systems — One obvious but nev-
ertheless important research direction is increasing
the complexity as well as the accuracy of computer
simulations[28]. For example, increasing the size of
the systems, the time-scale of the simulations, the
number of interactions that can be modelled will sig-
nificantly increase the applicability in complex dy-
namic systems. In general, this can be achieved
by either algorithmic improvements or hardware im-
provements, or both. In that regard, we expect that
modern neural network technologies together with ad-
vanced hardware such as GPUs, TPUs or even OPUs
[29, [30] will have an enormous impact. Furthermore,
the recent progress in experimental quantum com-
puting for quantum chemistry [31] and physics[32H34]
promises that entirely new algorithms, based on quan-
tum mechanics itself, will play an important role in
this area [35],86]. Algorithmic improvements could in-
volve adaptive and intelligent resolution during simu-
lation and advanced visualization methods[I3], which
directly leads to the second future techniques:

Full spectrum of senses — We believe that human
scientists can get more out of data if the full capabil-
ities of all our senses are addressed. At the moment,
we analyze data largely in (potentially animated) 2-
dimensional pictures. As a first step, we believe that
real 3D environments (realized either via virtual or
augmented reality glasses, or holography) will signifi-
cantly help in understanding complex systems or com-
plex data. Initial advances in that regard have been
demonstrated in the domain of chemistry [37H39], and
we expect this to become a standard tool for scientists

to advance scientific understanding. In addition, we
expect that going beyond the visual sense can open
entirely new ways to experience scientific data. For
example, the auditory sense is excellent in detecting
structure or symmetries in (periodic) time-dependent
data [40]. Furthermore, including the sense of touch,
smell and taste could further expand the horizon of
experiences. We expect that in order to realize that,
physical scientists need to work closely together with
psychologists and neurologists (and potentially even
with artists), to develop suitable data representations
that can be efficiently recognized by scientists with
all their senses. An ultimate, admittedly futuristic
version of a computational microscope could circum-
vent the receptors of human senses and instead use
a computer-brain interface to enhance further experi-
encing computed data.

B. Resource of inspiration for scientific
understanding

Surprising and creative ideas are the foundation of
Science. Computer algorithms are a means to provoke
such ideas systematically, thereby significantly accel-
erating scientific and technological progress. Already
70 years ago, Alan Turing realized that computers
could surprise their human creators: “Machines take
me by surprise with great frequency. This is largely be-
cause I do not do sufficient calculation to decide what
to expect them to do, or rather because, although I
do a calculation, I do it in a hurried, slipshod fash-
ion, taking risks.” and ”Naturally I am often wrong,
and the result is a surprise for me for by the time
the experiment is done these assumptions have been
forgotten “[41].

A much more recent study provides stories by



dozens of researchers of artificial life and evolution.
They demonstrate in an impressive way how computer
algorithms can surprise their human creators and lead
to behaviour that the authors would denote as cre-
ative[42]. Accordingly, we believe that androids can
be artificial muses of Science in a metaphorical sense.

Those examples demonstrate that computers can
indeed be used as a source of surprises. But what are
the most general ways to get inspirations from com-
puters? And how can they be lifted by humans to true
scientific understanding? We will outline a number of
ways to develop ways to provoke surprising behaviours
of algorithms and use their solutions, internal or exter-
nal states as a source of inspiration for new scientific
ideas.

The future resource of inspiration

Identifying surprises in data — Exceptional data
points or unexpected regularities obtained from ex-
periments or simulations can surprise human scien-
tists and inspire new ideas and concepts. Our survey
shows that these exceptional points are usually iden-
tified by humans, such as the following two examples,
which use high-throughput computations in chemistry
[43] and quantum optics [44], [45)].

The first example deals with a surprising phase of
crystal structures in high-pressure physics. There, the
authors found an unexpected stable configurations of
alternating NHs and NHy layers, rather than a dense
NHgj phase. The authors conceptualized this phe-
nomenon as spontaneous ionization, a common pro-
cess in acid-base chemistry, which is now a widely
accepted phenomenon in the high-pressure phase di-
agram of NH3. Spontaneous ionization in the high-
pressure behaviour of matter has become a more gen-
eral principle that can be used without performing any
simulations [46].

In the second example, a search for new quan-
tum experiments uncovered a solution with consid-
erable larger quantum entanglement than expected.
The authors understood the underlying principles and
thereby discovered a new concept of entanglement
generation [47,[48]. The principle can be used without
any computation and, for example, acts now as a new
representation in more advanced artificial intelligence
systems for quantum physics [49], demonstrating the
application of the computer-inspired idea in more gen-
eral different contexts.

In contrast to these examples and many others from
literature and from personal accounts, the anomalies
could manifest themselves in a more involved com-
bination of variables, which might be very difficult
for humans to grasp. Accordingly, applying advanced
statistical methods and machine learning algorithms
(e.g., see reference [50]) to this type of problem will
be an important future research direction. Exciting

works into the direction of autonomous anomaly de-
tection have been applied on scientific data from the
Large Hadron Collider (LHC) at CERN [51H53]. Such
techniques have the potential to identify new physics
signatures, which can then be conceptualized and un-
derstood by human physicists [54], 55]. Neural net-
works that autonomously discover symmetries could
become an efficient discovery tool for outliers in sci-
entific data where the underlying rules might not be
known beforehand [56] [57].

Estimating the confidence of predictions will be one
method to directly search for anomalies in data [58].
The ability to uncover hidden regularities was very
recently demonstrated in mathematics, where an A.I.
hinted on relations between previously unconnected
invariants in knot theory, which allowed mathemati-
cians to conjecture and prove new theorems [59]. Al-
ternatively, an A.I. capable of constructing new scien-
tific hypotheses could uncover outliers or unexpected
patterns that are not discernible with standard statis-
tical methods.

It would be truly exciting to see an A.I. uncover hid-
den patterns or irregularities in scientific data previ-
ously overlooked by humans, which leads to new ideas
and, ultimately, to new conceptual understanding. As
of now, we are not aware of cases like that.

The data points for these systems could be ob-
tained from computational methods (involving those
described in section[I[V A)), with exciting opportunities
for mathematics or theoretical physics [60]. Alterna-
tively, the data could be obtained directly from exper-
iments. Here we can imagine a closed-loop approach
where an algorithm tries to explore the environment
and steer the exploration into unexpected regions. If
the data-source is an experiment, this future system
will require access to complex lab automation with
large parameter spaces to explore, as demonstrated
recently in biology [61], chemistry [62H67] or physics
[68, [69].

Identifying surprises in the scientific literature —
The number of scientific papers in essentially every
scientific domain is growing enormously[70]. Conse-
quently, researchers have to specialise in narrow sub-
disciplines, which makes finding new interdisciplinary
ideas difficult. In the future, we believe that comput-
ers will be able to use the scientific literature in an
automated way[(1H74] and identify exceptional and
surprising phenomena for further investigation. While
the large-scale automated analysis of the scientific lit-
erature, to our knowledge, has not yet been able to
induce new scientific understanding, there is signifi-
cant progress in the field. One promising approach
towards this goal is unsupervised word embedding of
a large corpus of scientific papers. In that technique,
the content of the scientific literature is transformed
into a high-dimensional vector space. Recently, this
technique has been applied in the domain of mate-
rial science [75] and rediscovered central scientific con-
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human scientist by (A) identifying surprises in data, (B) identifying surprises in the scientific literature, (C) finding
surprising concepts by inspecting models or (D) by probing the behaviour of artificial agents or (E) my finding new

concepts from interpretable solutions.

cepts such as the periodic table of the elements. Ad-
ditionally, the results also suggested the existence of
previously undiscovered structure-property relation-
ships. Examples include new candidates for thermo-
electric materials. Moreover, several other advanced
computational techniques are being developed in ma-
terial science to extract knowledge from the scien-
tific literature and investigate it systematically by A.I.
technologies[76], and can lead to complex scientific
conclusions as demonstrated for instance on zeolite
transformations [77].

An alternative approach aims to build semantic
knowledge networks from large bodies of scientific lit-
erature. In these networks, scientific concepts are
nodes, and edges carry relational information. In the
simplest case, that means two scientific concepts are
mentioned in the same scientific paper [78], [79]. Thus,
scientific knowledge is represented as an evolving net-
work, which can be used to identify both islands and
unexplored regions of the scientific literature. This
type of network was used in biochemistry to identify
efficient global research strategies [78] and in quantum
physics to predict and suggest future research direc-
tions [79]. Advances in A.I technology could improve
this type of system significantly. For example, natural
language processing architectures such as BERT []0],
or GPT3 [8]] could help extract more scientific knowl-
edge from research papers, and large graph-based neu-
ral networks could improve the prediction of new re-
search topics from semantic networks [82].

Surprising concepts by inspecting models — We also
expect considerable progress by rationalising what
A1 algorithms have learned in order to solve a specific
problem, i.e., explainable or interpretable A.I. [83H86].
One idea towards this goal is inspired by DeepDream-
ing, a method first used in computer vision [87 [8§].
Put simply, the idea is to invert a neural network

and probe its behaviour. Recently, this approach has
been applied to rediscover thermodynamical proper-
ties [22], and design principles for functional molecules
[89]. An alternative and remarkable application is the
disentanglement of variables in neural networks [90].
The goal is to understand the internal representation
the neural network has learned. Recently, astronom-
ical data, represented in geocentric coordinates, was
used to train a neural network and disentanglement
of variables enabled the rediscovery of heliocentric co-
ordinates via the internal representation of the model
[21]. In a related study, using gradient boosting with
decision trees, feature importance has been used to
explain properties of molecules, and quantum optics
circuits [91]. Related to this is a study where the inter-
nal representation of an unsupervised deep generative
model for quantum experiments has been inspected
to understand the model’s internal worldview[92]. In
the chemical domain, counterfactual explanations for
machine learning models have been demonstrated to
produce rationale behind a model’s prediction. Coun-
terfactual explanations illustrate what differences to
an event or instance would generate a change in an
outcome. Wellawatte et al. [93] showed how this can
be achieved in a model-independent way (it has been
demonstrated for random forest, sequence models and
graph neural networks), indicating great future poten-
tials for opening the black-box of Al in science. Albeit
not in science, recent work has investigated what the
chess-playing A.I AlphaZero has learned about chess
and how human-like knowledge is encoded in the in-
ternal representation [94]. The concepts rediscovered
in all of those works were not new, and thus the most
important challenge for the future is to learn how to
extract previously unknown concepts. Progress to-
wards resolving that challenge will be essential in the
near future to inspire new scientific ideas.



New concepts from interpretable solutions — Rather
than getting inspirations from the A.I. algorithms
themselves, scientists can also be surprised by the cor-
responding solutions. When solutions are represented
in an interpretable way, they can provoke new ideas
and lead to new concepts. An example of interpretable
representations is a mathematical formula. Thus,
scientists can inspect formulae derived by computer
algorithms to solve mathematical problems directly
and derive more general solution strategies. Several
publications demonstrated extracting symbolic mod-
els from experimental data of mechanical systems
[23, ©5], of quantum systems [96] and in astronomy
[97]. Tt will be exciting to see how these approaches,
e.g., combined with methods such as causal inference
[98], can be improved to propose reasonable physical
models of unknown systems that advance scientific un-
derstanding. Altogether, exciting advances have been
achieved in the field of mathematics[99] [100], and we
foresee similar approaches making a significant impact
in the physical sciences as well.

One concrete, recent example in astronomy is the
rediscovery of Newton’s law of gravitation from real-
world observational data of planets and moons in our
solar system from the last 30 years [I01]. The appli-
cation of graph neural networks allowed for the high-
quality prediction of the object’s motion. Further-
more, a symbolic regression technique called PySR
(introduced in [97]) was able to extract reasonable
mathematical expressions for the learned behaviour.
Interestingly, besides the equations of motions, the
method simultaneously predicts the masses of the
planetary objects correctly. The technique required
the assumption of several symmetries and other phys-
ical laws. It will be interesting to see whether these
prerequisites can be reduced further and how related
approaches can be applied to modern physics ques-
tions.

Another concrete example of this methodology has
been showcased in the field of quantum optics [49].
There, an A.I. algorithm with a graph-theoretical rep-
resentation of quantum optical setups designs config-
urations for previously unknown quantum systems.
The final solutions were represented in a physically-
interpretable graph-theoretical representation. From
there, human scientists can quickly interpret the un-
derlying reasons why the solutions work and apply
it in other contexts without further computation.
Accordingly, developing interpretable representations
and methods to extract underlying concepts in other
domains will be an important future research direc-
tion.

Probing the behaviour of artificial agents — Another
only rarely explored opportunity is interpreting the
behaviour of machines when tasked to solve a scien-
tific problem [I02]. Algorithms that take actions such
as genetic algorithms or reinforcement learning agents
adopt policies to navigate the problem space. Human

scientists can observe how they navigate this space.
Instead of following a strict external reward, e.g., max-
imise a specific property of a physical system, intrinsic
rewards such as artificial curiosity can be implemented
[103] 1T04]. Instead of maximizing directly some func-
tions, the artificial agent tries to learn and predict
the behaviour of the environment. It then chooses
actions that lead to situations it cannot predict well,
thus maximizing its own understanding of the envi-
ronment. It has been shown using curious agents in
simulated virtual universes [105] and robot agents in
real laboratories [67] that curiosity is an efficient ex-
ploration strategy. Alternative intrinsic rewards for
artificial agents are computational creativity[106, [107]
and surprise [I08]. These intrinsic rewards can pro-
duce exceptional and unexpected solutions, ultimately
inspiring human scientists.

C. Agent of Understanding

The third and final class we consider are algorithms
that can autonomously acquire new scientific under-
standing, a feat that has neither been described by
the respondents of our survey nor in the scientific lit-
erature. Therefore, we will approach this class by list-
ing the requirements of these agents, proposing tests
to detect their successful realization and speculating
what such computer programs could look like.

First, it is important to realize that finding new
scientific understanding is context-dependent. What
is new depends on whether we consider an individ-
ual scientist and their field of expertise, a scientific
domain, the whole scientific community or even the
entire scientific endeavour throughout history. Hence,
true agents of understanding must be able to evaluate
whether an insight is new, at least in the context of
a specific scientific domain that requires access to the
knowledge of a scientific field.

Secondly, de Regt emphasized the importance of
underlying scientific theories that allow us to recog-
nize qualitatively characteristic consequences [12]. It
is not enough to simply interpolate data points or pre-
dict new ones using advanced statistical methods such
as machine learning. Thus, even though such meth-
ods can approximate complex and expensive compu-
tations, naive applications of neural networks cannot
be agents of understanding. Scientific understanding
requires more than mere calculation. To illustrate this
point even further, let us consider one concrete exam-
ple in quantum physics from the literature: A com-
putational method solved an open question about the
generation of important resource states for quantum
computing. Then it extracted the conceptual core of
the solution in the form of a new quantum interfer-
ence effect in such a fashion that human scientists
can both understand the results and apply the ac-
quired understanding in different contexts [49]. Even



if the computer itself was able to apply the conceptual
core to other situations, it would not be a priori clear
whether the computer truly acquired scientific under-
standing. What is still missing is an explanation of
the discovered technique in the context of a scientific
theory. In this particular example, the android and
the human scientist would need to recognize the un-
derlying quantum interference in the context of the
theory of quantum physics. Thus, we can propose the
first sufficient condition for agents of understanding:

Condition for Scientific Understanding I:
An android gained scientific understanding if it
can recognize qualitatively characteristic conse-
quences of a theory without performing exact
computations and use them in a new context.

This condition closely follows the ideas of de Regt
and Dieks [I3]. Let us go one step further and imagine
that there is an android capable of explaining discov-
eries in the context of scientific theories. How could
human scientists recognize that the machine acquired
new scientific understanding? We argue that human
scientists would do it in the exact same way they can
recognize that other human scientists acquired new
scientific understanding. That is, let the other human
scientists transfer the newly acquired understanding
to themselves. This allows us to propose the second
sufficient condition for agents of understanding;:

Condition for Scientific Understanding II:
An android gained scientific understanding if it
can transfer its understanding to a human ex-
pert.

We argue that one can only recognize indirectly
whether a computer (or human) has gained scientific
understanding. Therefore, finally, we propose a test
in the spirit of the Turing test [41] or the Feigenbaum
test[109] (or adaptations thereof in the natural sci-
ences such as the Chemical Turing Test or the Feyn-
man Test [4]):

The Scientific Understanding Test:

A human (the student) interacts with a
teacher, either a human or an android sci-
entist. The teacher’s goal is to explain a sci-
entific theory and its qualitative, characteris-
tic consequences to the student. Another hu-
man (the referee) tests both the student and
the teacher independentlgﬂ If the referee can-
not distinguish between the qualities of their
non-trivial explanations in various contexts,
we argue that the teacher has scientific un-
derstanding.

3In principle, there is no reason for the student or the referee not
to be androids. However, to keep the test as simple as possible,
we want to keep the number of possible variations small.

This implies that humans need to understand the
new concepts that androids devised. If a machine
truly understands something, it will be able to ex-
plain it and transfer the understanding to someone
elseE| We believe that this should always be possible,
even if the understanding is far beyond what human
experts know at this point. We envision that com-
puters will use advanced human-computer interaction
techniques together with the tools we described for
(future) computational microscopes.

Additionally, scientific discussions between a hu-
man and a computer could be realized using advanced
queries in natural language processing tools such as
BIRD [R0] or GPT-3 [8I]. That way, the scientist
could probe the computer with scientific questions.
Suppose the scientist gains new scientific understand-
ing by communicating with the algorithm, as judged
by our scientific understanding test. In that case, they
can confirm that the computer truly acquired under-
standingﬂ We are optimistic that more efforts will
be directed at developing the necessary technologies,
which will lead to ever more convincing demonstra-
tions of android scientists acting as true agents of un-
derstanding in the future.

V. CONCLUSION

Undoubtedly, advanced computational methods in
general and artificial intelligence specifically will fur-
ther revolutionize how scientists investigate the se-
crets of our world. We outline how these new methods
can directly contribute to one of the main aims of sci-
ence, namely acquiring new scientific understanding.
We suspect that significant future progress in the use
of androids to acquire scientific understanding will re-
quire multidisciplinary collaborations between natu-
ral scientists, computer scientists and philosophers of
science. Thus, we firmly believe that these research
efforts can — within our lifetimes — transform androids
into true agents of understanding that will directly
contribute to one of the most essential aims of sci-
ence, namely Scientific Understanding.
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