
Recipe for a General, Powerful, Scalable
Graph Transformer

Ladislav Rampášek∗
Mila, Université de Montréal

Mikhail Galkin
Mila, McGill University

Vijay Prakash Dwivedi
Nanyang Technological University, Singapore

Anh Tuan Luu
Nanyang Technological University, Singapore

Guy Wolf
Mila, Université de Montréal

Dominique Beaini
Valence Discovery, Mila, Université de Montréal

Abstract

We propose a recipe on how to build a general, powerful, scalable (GPS) graph
Transformer with linear complexity and state-of-the-art results on a diverse set
of benchmarks. Graph Transformers (GTs) have gained popularity in the field of
graph representation learning with a variety of recent publications but they lack a
common foundation about what constitutes a good positional or structural encoding,
and what differentiates them. In this paper, we summarize the different types of
encodings with a clearer definition and categorize them as being local, global
or relative. The prior GTs are constrained to small graphs with a few hundred
nodes, here we propose the first architecture with a complexity linear in the number
of nodes and edges O(N + E) by decoupling the local real-edge aggregation
from the fully-connected Transformer. We argue that this decoupling does not
negatively affect the expressivity, with our architecture being a universal function
approximator on graphs. Our GPS recipe consists of choosing 3 main ingredients:
(i) positional/structural encoding, (ii) local message-passing mechanism, and (iii)
global attention mechanism. We provide a modular framework GRAPHGPS1 that
supports multiple types of encodings and that provides efficiency and scalability
both in small and large graphs. We test our architecture on 16 benchmarks and
show highly competitive results in all of them, show-casing the empirical benefits
gained by the modularity and the combination of different strategies.

1 Introduction

Graph Transformers (GTs) alleviate fundamental limitations pertaining to the sparse message passing
mechanism, e.g., over-smoothing [47], over-squashing [1], and expressiveness bounds [61, 45],
by allowing nodes to attend to all other nodes in a graph (global attention). This benefits several
real-world applications, such as modeling chemical interactions beyond the covalent bonds [63], or
graph-based robotic control [37]. Global attention, however, requires nodes to be better identifiable
within the graph and its substructures [14]. This has led to a flurry of recently proposed fully-
connected graph transformer models [14, 36, 63, 44, 31] as well as various positional encoding
schemes leveraging spectral features [14, 36, 39] and graph features [16, 9]. Furthermore, standard

∗To whom correspondence should be addressed: ladislav.rampasek@mila.quebec
1The source code of GRAPHGPS is available at: https://github.com/rampasek/GraphGPS.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
5.

12
45

4v
4

 [
cs

.L
G

]
 1

5
Ja

n
20

23

https://github.com/rampasek/GraphGPS

global attention incurs quadratic computational costs O(N2) for a graph with N nodes and E edges,
that limits GTs to small graphs with up to a few hundred nodes.

Whereas various GT models focus on particular node identifiability aspects, a principled framework
for designing GTs is still missing. In this work, we address this gap and propose a recipe for building
general, powerful, and scalable (GPS) graph Transformers. The recipe defines (i) embedding modules
responsible for aggregating positional encodings (PE) and structural encodings (SE) with the node,
edge, and graph level input features; (ii) processing modules that employ a combination of local
message passing and global attention layers (see Figure 1).

The embedding modules organize multiple proposed PE and SE schemes into local and global levels
serving as additional node features whereas positional and structural relative features contribute to
edge features. The processing modules define a computational graph that allows to balance between
message-passing graph neural networks (MPNNs) and Transformer-like global attention, including
attention mechanisms linear in the number of nodes O(N).

To the best of our knowledge, application of efficient attention models has not yet been thoroughly
studied in the graph domain, e.g., only one work [11] explores the adaptation of Performer-style [12]
attention approximation on small graphs. Particular challenges emerge with explicit edge features that
are incorporated as attention bias in fully-connected graph transformers [36, 63]. Linear transformers
do not materialize the attention matrix directly, hence incorporating edge features becomes a non-
trivial task. In this work, we hypothesize that explicit edge features are not necessary for the global
graph attention and adopt Performer [12] and BigBird [66] as exemplary linear attention mechanisms.

Our contributions are as follows. (i) Provide a general, powerful, scalable (GPS) GT blueprint that
incorporates positional and structural encodings with local message passing and global attention,
visualized in Figure 1. (ii) Provide a better definition of PEs and SEs and organize them into local,
global, and relative categories. (iii) Show that GPS with linear global attention, e.g., provided by
Performer [12] or BigBird [66], scales to graphs with several thousand nodes and demonstrates
competitive results even without explicit edge features within the attention module, whereas existing
fully-connected GTs [36, 63] are limited to graphs of up to few hundred nodes. (iv) Conduct
an extensive ablation study that evaluates contribution of PEs, local MPNN, and global attention
components in perspective of several benchmarking datasets. (v) Finally, following the success of
GraphGym [65] we implement the blueprint within a modular and performant GRAPHGPS package.

2 Related Work

Graph Transformers (GT). Considering the great successes of Transformers in natural language
processing (NLP) [55, 32] and recently also in computer vision [18, 25, 24], it is natural to study their
applicability in the graph domain as well. Particularly, they are expected to help alleviate the problems
of over-smoothing and over-squashing [1, 54] in MPNNs, which are analogous to the vanishing
gradients and lack of long-term dependencies in NLP. Fully-connected Graph Transformer [14]
was first introduced together with rudimentary utilisation of eigenvectors of the graph Laplacian as
the node positional encoding (PE), to provide the otherwise graph-unaware Transformer a sense of
nodes’ location in the input graph. Building on top of this work, SAN [36] implemented an invariant
aggregation of Laplacian’s eigenvectors for the PE, alongside conditional attention for real and virtual
edges of a graph, which jointly yielded significant improvements. Concurrently, Graphormer [63, 51]
proposed using pair-wise graph distances (or 3D distances) to define relative positional encodings,
with outstanding success on large molecular benchmarks. Further, GraphiT [44] used relative PE
derived from diffusion kernels to modulate the attention between nodes. Finally, GraphTrans [31]
proposed the first hybrid architecture, first using a stack of MPNN layers, before fully-connecting the
graph. Since, the field has continued to propose alternative GTs: SAT [9], EGT [29], GRPE [48].

Positional and structural encodings. There have been many recent works on PE and SE, notably
on Laplacian PE [14, 36, 3, 57, 39], shortest-path-distance [38, 63], node degree centrality [63],
kernel distance [44], random-walk SE [16], structure-aware [9, 6, 5], and more. Some works also
propose dedicated networks to learn the PE/SE from an initial encoding [36, 16, 39, 9]. To better
understand the different PE/SE and the contribution of each work, we categorize them in Table 1 and
examine their effect in Section 3.2. In most cases, PE/SE are used as soft bias, meaning they are
simply provided as input features. But in other cases, they can be used to direct the messages [3] or
create bridges between distant nodes [35, 54].

2

Global PE as node features. Eigenvectors of
the Laplacian 𝝓𝑘 associated to the 𝑘-lowest
non-zero eigenvalues.

Global SE as node features. 𝑘-lowest
eigenvalues of the Laplacian 𝜆𝑘 .

max

0

-max

max

min

Any variable input
size network

DeepSet

SignNet

Posi�onal encodings (PE) Structural encodings (SE)

DeepSet allows to work varying number of
eigenvectors, and uses augmenta�on to
handle the sign ambiguity of eigenvectors.
SignNet is a sign-invariant network well
adapted to work with a varying number of
sign-ambiguous eigenvectors.

Batch-norm normalizes the encoding across
graphs for each 𝜆𝑘 and 𝒘𝑚 to ensure they
are within the same range.
MLP is a mul�-layer perceptron that
processes the encodings to learn a
meaningful structure.
DeepSet allows to work varying number of
eigenvalues.

Graph features
Nodes features 𝑿0 are
concatenated to the
posi�onal features.

GPS layers
MPNN layer can be any model ac�ng on a given node’s
neighbourhood with edge features .
Transformer layer can be any fully-connected layer that
works with a variable number of input nodes without
edge features.
𝐿-layers are repeated, with 𝑙 being the current layer’s
index.
Residual connec�ons for the MPNN and Transformer
layers are omi�ed for clarity.
MLPs mix the node/edge features with the PE and SE.

MLP

Any global
A�en�on

Transformer

Performer

BigBird

Any MPNN layer

GINE

GatedGCN

PNA

2-layer
MLP

MLP processes the node
features and edge features
before the GPS layers.

Rela�ve SE as edge features. Boolean
indica�ng if two nodes belong to the same
sub-structure.

Local SE as node features. Diagonal of the
𝑚-steps random walk matrix

.

Local PE as node features. Sum over the rows
of non-diagonal elements of the random walk
matrix. 𝒘𝑚 = 𝑫−1𝑨 𝑚

𝑖 − 𝒘𝑚 .

Rela�ve PE as edge features. Pair -wise
difference of local/global PE. Shown below is
the gradient of the eigenvectors ∇𝝓𝑘 .

𝜆1…𝑘 =
0.28, 0.71, …

5-ring 3-star
max

min

max

0

MLP

batch-norm

batch-norm

MLP

MLP

Global features 𝒈0 are
concatenated to the node
features.

Edge features 𝑬0 are
concatenated to the rela�ve
PE/SE.

MLP MLP

MLP

MLP

batch-norm

MLP

⊕ Concatena�on
+ Sum
MLP Mul�-layer perceptron
PNA Principal neighbourhood aggrega�on
GINE Graph isomorphism network with edges
GCN Graph convolu�onal network

Node features
Edge features
Learnable module
Choice of mul�ple modules

DeepSet
MLP

Figure 1: Modular GPS graph Transformer, with examples of PE and SE. Task specific layers for
node/graph/edge-level predictions, such as pooling or output MLP, are omitted for simplicity.

Linear Transformers. The quadratic complexity of attention in the original Transformer architec-
ture [55] motivated the search for more efficient attention mechanisms that would scale linearly
with the sequence length. Most of such linear transformers are developed for language modeling
tasks, e.g., Linformer [58], Reformer [34], Longformer [4], Performer [12], BigBird [66], and have a
dedicated Long Range Arena benchmark [52] to study the limits of models against extremely long
input sequences. Pyraformer [40] is an example of a linear transformer for time series data, whereas
S4 [23] is a more general signal processing approach that employs the state space model theory
without the attention mechanism. In the graph domain, linear transformers are not well studied.
Choromanski et al. [11] are the first to adapt Performer-style attention kernelization to small graphs.

3 Methods

In this work we provide a general, powerful, scalable (GPS) architecture for graph Transformers,
following our 3-part recipe presented in Figure 1. We begin by categorization of existing positional
(PE) and structural encodings (SE), a necessary ingredient for graph Transformers. Next, we analyse
how these encodings also increase expressive power of MPNNs. The increased expressivity thus
provides double benefit to our hybrid MPNN+Transformer architecture, which we introduce in
Section 3.3. Last but not least, we provide an extensible implementation of GPS in GRAPHGPS
package, built on top of PyG [20] and GraphGym [65].

3.1 Modular positional and structural encodings

One of our contribution is to provide a modular framework for PE/SE. It was shown in previous works
that they are one of the most important factors in driving the performance of graph Transformers.
Thus, a better understanding and organization of the PE and SE will aid in building of a more modular
architecture and in guiding of the future research.

We propose to organize the PE and SE into 3 categories: local, global and relative in order to
facilitate the integration within the pipeline and facilitate new research directions. They are presented
visually in Figure 1, with more details in Table 1. Although PE and SE can appear similar to some

3

Table 1: The proposed categorization of positional encodings (PE) and structural encodings (SE).
Some encodings are assigned to multiple categories in order to show their multiple expected roles.

Encoding type Description Examples

Local PE
node features

Allow a node to know its position and role
within a local cluster of nodes.
Within a cluster, the closer two nodes are
to each other, the closer their local PE will
be, such as the position of a word in a sen-
tence (not in the text).

• Sum each column of non-diagonal elements of the m-steps
random walk matrix.

• Distance between a node and the centroid of a cluster con-
taining the node.

Global PE
node features

Allow a node to know its global position
within the graph.
Within a graph, the closer two nodes are,
the closer their global PE will be, such as
the position of a word in a text.

• Eigenvectors of the Adjacency, Laplacian [15, 36] or dis-
tance matrices.

• SignNet [39] (includes aspects of relative PE and local SE).
• Distance from the graph’s centroid.
• Unique identifier for each connected component of the

graph.

Relative PE
edge features

Allow two nodes to understand their dis-
tances or directional relationships.
Edge embedding that is correlated to the
distance given by any global or local PE,
such as the distance between two words.

• Pair-wise node distances [38, 3, 36, 63, 44] based on
shortest-paths, heat kernels, random-walks, Green’s func-
tion, graph geodesic, or any local/global PE.

• Gradient of eigenvectors [3, 36] or any local/global PE.
• PEG layer [57] with specific node-wise distances.
• Boolean indicating if two nodes are in the same cluster.

Local SE
node features

Allow a node to understand what sub-
structures it is a part of.
Given an SE of radius m, the more similar
the m-hop subgraphs around two nodes
are, the closer their local SE will be.

• Degree of a node [63].
• Diagonal of the m-steps random-walk matrix [16].
• Time-derivative of the heat-kernel diagonal (gives the de-

gree at t = 0).
• Enumerate or count predefined structures such as triangles,

rings, etc. [6, 68].
• Ricci curvature [54].

Global SE
graph features

Provide the network with information
about the global structure of the graph.
The more similar two graphs are, the
closer their global SE will be.

• Eigenvalues of the Adjacency or Laplacian matrices [36].
• Graph properties: diameter, girth, number of connected

components, # of nodes, # of edges, nodes-to-edges ratio.

Relative SE
edge features

Allow two nodes to understand how much
their structures differ.
Edge embedding that is correlated to the
difference between any local SE.

• Pair-wise distance, encoding, or gradient of any local SE.
• Boolean indicating if two nodes are in the same sub-

structure [5] (similar to the gradient of sub-structure enu-
meration).

extent, they are different yet complementary. PE gives a notion of distance, while SE gives a notion
of structural similarity. One can always infer certain notions of distance from large structures, or
certain notions of structure from short distances, but this is not a trivial task, and the objective of
providing PE and SE remains distinct, as discussed in the following subsections.

Despite presenting a variety of possible functions, we focus our empirical evaluations on the global
PE, relative PE and local SE since they are known to yield significant improvements. We leave the
empirical evaluation of other encodings for future work.

Positional encodings (PE) are meant to provide an idea of the position in space of a given node
within the graph. Hence, when two nodes are close to each other within a graph or subgraph, their PE
should also be close. A common approach is to compute the pair-wise distance between each pairs
of nodes or their eigenvectors as proposed in [38, 63, 36, 57], but this is not compatible with linear
Transformers as it requires to materialize the full attention matrix [12]. Instead, we want the PE to
either be features of the nodes or real edges of the graph, thus a better fitting solution is to use the
eigenvectors of the graph Laplacian or their gradient [15, 3, 36]. See Table 1 for more PE examples.

Structural encodings (SE) are meant to provide an embedding of the structure of graphs or subgraphs
to help increase the expressivity and the generalizability of graph neural networks (GNN). Hence,
when two nodes share similar subgraphs, or when two graphs are similar, their SE should also be close.
Simple approaches are to identify pre-defined patterns in the graphs as one-hot encodings, but they
require expert knowledge of graphs [6, 5]. Instead, using the diagonal of the m-steps random-walk
matrix encodes richer information into each node [16], such as for odd m it can indicate if a node is a
part of an m-long cycle. Structural encodings can also be used to define the global graph structure,
for instance using the eigenvalues of the Laplacian, or as relative edge features to identify if nodes
are contained within the same clusters, with more examples in Table 1.

4

3.2 Why do we need PE and SE in MPNN?

As reviewed earlier, several recent GNNs make use of positional encodings (PE) and structural
encodings (SE) as soft biases to improve the model expressivity (summarized in Table 1), which
also leads to better generalization. In this section, we present an examination of PE and SE by
showing how message-passing networks, despite operating on the graph structure, remain blind to
the information encapsulated by the PE and SE.

1-Weisfeiler-Leman test (1-WL). It is well known that standard MPNNs are as expressive as the
1-WL test, meaning that they fail to distinguish non-isomorphic graphs under a 1-hop aggregation.
We argue that the selected local, global and relative PE/SE allow MPNNs to become more expressive
than the 1-WL test, thus making them fundamentally more expressive at distinguishing between nodes
and graphs. To this end, we study the following two types of graphs (Figure 2 and Appendix C.1).

<latexit sha1_base64="8kJMbS8q0CYTKUMN2UNnwZwFzeo=">AAACEHicbVDLSgMxFM3UV62vUZdugkWsIGVGi7osutBlBfuAzjBk0rQNTTJDkhGGYT7Bjb/ixoUibl26829MHwutHgicnHMv994Txowq7ThfVmFhcWl5pbhaWlvf2Nyyt3daKkokJk0csUh2QqQIo4I0NdWMdGJJEA8ZaYejq7HfvidS0Ujc6TQmPkcDQfsUI22kwD70ONJDjFh2nQfZ5CN55mkqUqhGNM7ziusenx4FdtmpOhPAv8SdkTKYoRHYn14vwgknQmOGlOq6Tqz9DElNMSN5yUsUiREeoQHpGioQJ8rPJgfl8MAoPdiPpHlCw4n6syNDXKmUh6ZyvLGa98bif1430f0LP6MiTjQReDqonzCoIzhOB/aoJFiz1BCEJTW7QjxEEmFtMiyZENz5k/+S1knVPavWbmvl+uUsjiLYA/ugAlxwDurgBjRAE2DwAJ7AC3i1Hq1n6816n5YWrFnPLvgF6+MboJic7A==</latexit>Gskip(11, 3)
<latexit sha1_base64="HuTkHIzkHlkAgiSsRMGaHIIx0mk=">AAACEHicbVDLSgMxFM3UV62vUZdugkWsIGWmFHVZdKHLCvYBnaFk0rQNTTJDkhHKMJ/gxl9x40IRty7d+Tdmpl1o9UDg5Jx7ufeeIGJUacf5sgpLyyura8X10sbm1vaOvbvXVmEsMWnhkIWyGyBFGBWkpalmpBtJgnjASCeYXGV+555IRUNxp6cR8TkaCTqkGGkj9e1jjyM9xogl12k/yT+SJ56mYgrVhEZpWnHd09pJ3y47VScH/EvcOSmDOZp9+9MbhDjmRGjMkFI914m0nyCpKWYkLXmxIhHCEzQiPUMF4kT5SX5QCo+MMoDDUJonNMzVnx0J4kpNeWAqs43VopeJ/3m9WA8v/ISKKNZE4NmgYcygDmGWDhxQSbBmU0MQltTsCvEYSYS1ybBkQnAXT/5L2rWqe1at39bLjct5HEVwAA5BBbjgHDTADWiCFsDgATyBF/BqPVrP1pv1PistWPOeffAL1sc3nxOc6w==</latexit>Gskip(11, 2)

(a) Circular Skip Link graphs

<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d
<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d

<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a

<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b

(b) Decalin molecular graph

Figure 2: Example graphs
with anonymous nodes with-
out distinguishing features.

Circular Skip Link (CSL) graph. In a CSL graph-pair [46], we
want to be able to distinguish the two non-isomorphic graphs. Since
the 1-WL algorithm produces the same color for every node in both
graphs, also every MPNN will fail to distinguish them. However,
using a global PE (e.g., Laplacian PE [15]) assigns each node a unique
initial color and makes the CSL graph-pair distinguishable. This
demonstrates that an MPNN cannot learn such a PE from the graph
structure alone. Next, using a local SE (e.g., diagonals of m-steps
random walk) can successfully capture the difference in the skip links
of the two graphs [42], resulting in their different node coloring [16].

Decalin molecule. In the bicyclic Decalin graph, Figures 2b and C.1b,
the node a is isomorphic to node b, and so is the node c to node d. A
1-WL coloring of the nodes, and analogously MPNN, would generate
one color for the nodes a, b and another color for c, d. The same
applies to the aforementioned local SE [16]. In case of link prediction,
this causes potential links (a, d) and (b, d) to be indistinguishable [67].
Using a distance-based relative PE on the edges or an eigenvector-
based global PE, however, would allow to differentiate the two links.

3.3 GPS layer: an MPNN+Transformer hybrid

In this section we introduce the GPS layer, which is a hybrid MPNN+Transformer layer. First we
argue how it alleviates the limitation of a closely related work. Next, we list the layer update equations
which can be instantiated with a variety of MPNN and Transformer layers. Finally, we present its
characteristics in terms of modularity, scalability and expressivity.

Preventing early smoothing. Why not use an architecture like GraphTrans [31] comprising of a few
layers of MPNNs before the Transformer? Since MPNNs are limited by problems of over-smoothing,
over-squashing, and low expressivity against the WL test [1, 54], these layers could irreparably fail to
keep some information in the early stage. Although they could make use of PE/SE or more expressive
MPNNs [3, 16], they are still likely to lose information. An analogous 2-stage strategy was successful
in computer vision [18, 24] thanks to the high expressivity of convolutional layers on grids, but we
do not expect it to achieve the same success on graphs due to the limitations of message-passing.

Update function. At each layer, the features are updated by aggregating the output of an MPNN
layer with that of a global attention layer, as shown in Figures 1 and D.1, and described by the
equations below. Note that the edge features are only passed to the MPNN layer, and that residual
connections with batch normalization [30] are omitted for clarity. Both the MPNN and GlobalAttn
layers are modular, i.e., MPNN can be any function that acts on a local neighborhood and GlobalAttn
can be any fully-connected layer.

X`+1,E`+1 = GPS`
(
X`,E`,A

)
(1)

computed as X`+1
M , E`+1 = MPNN`e

(
X`,E`,A

)
, (2)

X`+1
T = GlobalAttn`

(
X`
)
, (3)

X`+1 = MLP`
(
X`+1

M + X`+1
T

)
, (4)

5

where A ∈ RN×N is the adjacency matrix of a graph withN nodes andE edges; X` ∈ RN×d` ,E` ∈
RE×d` are the d`-dimensional node and edge features, respectively; MPNN`e and GlobalAttn` are
instances of an MPNN with edge features and of a global attention mechanism at the `-th layer with
their corresponding learnable parameters, respectively; MLP` is a 2-layer MLP block.

Modularity is achieved by allowing drop-in replacement for a number of module choices, including
the initial PE/SE types, the networks that processes those PE/SE, the MPNN and global attention
layers that constitute a GPS layer, and the final task-specific prediction head. Further, as research
advances in different directions, GRAPHGPS allows to easily implement new PE/SE and other layers.

Scalability is achieved by allowing for a computational complexity linear in both the number of
nodes and edges O(N + E); excluding the potential precomputation step required for various PE,
such as Laplacian eigen-decomposition. By restricting the PE/SE to real nodes and edges, and
by excluding the edge features from the global attention layer, we can avoid materializing the full
quadratic attention matrix. Therefore we can utilize a linear Transformer with O(N) complexity,
while the complexity of an MPNN is O(E). For sparse graphs such as molecular graphs, regular
graphs, and knowledge graphs, the edges are practically proportional to the nodes E = Θ(N),
meaning the entire complexity can be considered linear in the number of nodes O(N). Empirically,
even on small molecular graphs, our architecture reduces computation time compared to other GT
models, e.g., a model of ~6M parameters requires 196s per epoch on the ogbg-molpcba [27] dataset,
compared to 883s for SAN [36] on the same GPU type.

Expressivity in terms of sub-structure identification and the Weisfeiler-Leman (WL) test is achieved
via providing a rich set of PE/SE, as proposed in various works [3, 36, 16, 5, 6] and detailed in Section
3.1. Further, the Transformer allows to resolve the expressivity bottlenecks caused by over-smoothing
[36] and over-squashing [1] by allowing information to spread across the graph via full-connectivity.
Finally, in Section 3.4, we demonstrate that, given the right components, the proposed architecture
does not lose edge information and is a universal function approximator on graphs.

3.4 Theoretical expressivity

In this section, we first discuss how the MPNN layer allows to propagate edge and neighbor informa-
tion on the nodes. Then, we show that the proposed model is a universal function approximator on
graphs, similarly to the SAN architecture [36].

Preserving edge information in the Transformer layer. Most GTs do not fully utilize edge features
of the input graph. The Graph Transformer [14], SAN [36] and Graphormer [63] only use edge
features to condition the attention between a pair of nodes, that is, they influence the attention gating
mechanism but are not explicitly involved in updating of the node representations. GraphiT [44]
does not consider edge features at all. Recent 2-step methods GraphTrans [31] and SAT [9] can use
edge features in their first MPNN step, however this step is applied only once and typically includes
several k rounds of message passing. Therefore this latter approach may suffer from initial over-
smoothing, as k-hop neighborhoods together with the respective edge features need to be represented
in a fixed-sized node representation.

On the other hand, in GPS, interleaving one round of local neighborhood aggregation via an MPNN
layer with global self-attention mechanism reduces the initial representation bottleneck and enables
iterative local and global interactions. In the attention, the key-query-value mechanism only explicitly
depends on the node features, but assuming efficient representation encoding by the MPNN, the node
features can implicitly encode edge information, thus edges can play a role in either the key, query, or
values. In Appendix C.2, we give a more formal argument on how, following an MPNN layer, node
features can encode edge features alongside information related to node-connectivity.

Universal function approximator on graphs. Kreuzer et al. [36][Sec. 3.5] demonstrated the uni-
versality of graph Transformers. It was shown that, given the full set of Laplacian eigenvectors, the
model was a universal function approximator on graphs and could provide an approximate solution to
the isomorphism problem, making it more powerful than any Weisfeiler-Leman (WL) isomorphism
test given enough parameters. Here, we argue that the same holds for our architecture since we can
also use the full set of eigenvectors, and since all edge information can be propagated to the nodes.

6

Table 2: Summary of the ablation studies. Details of the architectural choices, parameters, standard
deviation, and computation times are presented in Appendix B.

(a) Ablation of the Transformer and MPNN layers. We
observe a major drop when using only a Transformer
without an MPNN. Further, most datasets benefit from
using a Transformer, without any negative impact.

Ablation ZINC PCQM4Mv2CIFAR10 MalNet
subset -Tiny

MAE ↓ MAE ↓ Acc. ↑ Acc. ↑

G
lo

ba
l

A
tt

en
tio

n none 0.070 0.1213 69.95 92.23
Transformer 0.070 0.1159 72.31 93.50
Performer 0.071 0.1142 70.67 92.64
BigBird 0.071 0.1237 70.48 92.34

M
PN

N

none 0.217 0.3294 68.86 73.90
GINE 0.070 0.1284 71.11 92.27
GatedGCN 0.086 0.1159 72.31 92.64
PNA 0.070 0.1409 73.42 91.67

(b) Ablation of the PE and SE types. RWSE provides
consistent gains at relatively low computational cost,
while SignNetDeepSets is the single best performing en-
coding, albeit at increased computational cost.

Ablation ZINC PCQM4Mv2CIFAR10 MalNet
subset -Tiny

MAE ↓ MAE ↓ Acc. ↑ Acc. ↑

PE
/S

E

none 0.113 0.1355 71.49 92.64
RWSE 0.070 0.1159 71.96 92.77
LapPE 0.116 0.1201 72.31 92.74
SignNetMLP 0.090 0.1158 71.74 92.57
SignNetDeepSets 0.079 0.1144 72.37 93.13
PEGLapEig 0.161 0.1209 72.10 92.27

*Encodings are color-coded by their positional or structural type.

4 Experiments

We perform ablation studies on 4 datasets to evaluate the contribution of the message-passing module,
the global attention module, and the positional or structural encodings. Then, we evaluate GPS on a
diverse set of 11 benchmarking datasets, and show state-of-the-art (SOTA) results in many cases.

We test on datasets from different sources to ensure diversity, providing their detailed description in
Appendix A.1. From the Benchmarking GNNs [15], we test on the ZINC, PATTERN, CLUSTER,
MNIST, CIFAR10. From the open graph benchmark (OGB) [27], we test on all graph-level datasets:
ogbg-molhiv, ogbg-molpcba, ogbg-code2, and ogbg-ppa, and from their large-scale challenge we
test on the OGB-LSC PCQM4Mv2 [28]. Finally, we also select MalNet-Tiny [21] with 5000 graphs,
each of up to 5000 nodes, since the number of nodes provide a scaling challenge for Transformers.

4.1 Ablation studies

In this section, we evaluate multiple options for the three main components of our architecture
in order to gauge their contribution to predictive performance and to better guide dataset-specific
hyper-parameter optimization. First, we quantify benefits of the considered global-attention modules
in 4 tasks. Then, we note that the MPNN layer is an essential part for high-performing models, and
identify the layer type most likely to help. Finally, we observe when different global PE or local SE
provide significant boost in the performance. All ablation results are averaged over multiple random
seeds and summarized in Table 2, with additional information available in Appendix B.

Global-Attention module. Here we consider global attention implemented as O(N2) key-query-
value Transformer attention or linear-time attention mechanisms of Performer or BigBird. We notice
in Table 2a that using a Transformer is always beneficial, except for the ZINC dataset where no
changes are observed. This motivates our architecture and the hypothesis that long-range dependencies
are generally important. We further observe that Performer falls behind Transformer in terms of the
predictive performance, although it provides a gain over the baseline and the ability to scale to very
large graphs. Finally, BigBird in our setting offers no significant gain, while also being slower than
Performer (see Appendix B).

Having no gain on the ZINC dataset is expected since the task is a combination of the computed
octanol-water partition coefficient (cLogP) [60] and the synthetic accessibility score (SA-score) [19],
both of which only count occurrences of local sub-structures. Hence, there is no need for a global
connectivity, but a strong need for structural encodings.

Message-passing module. Next, we evaluate the effect of various message-passing architectures,
Table 2a. It is apparent that they are fundamental to the success of our method: removing the layer
leads to a significant drop in performance across all datasets. Indeed, without an MPNN, the edge

7

Table 3: Test performance in five benchmarks from [15]. Shown is the mean ± s.d. of 10 runs with
different random seeds. Highlighted are the top first, second, and third results.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

GCN [33] 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN [61] 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT [56] 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GatedGCN [7, 15] 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
GatedGCN-LSPE [16] 0.090 ± 0.001 – – – –
PNA [13] 0.188 ± 0.004 97.94 ± 0.12 70.35 ± 0.63 – –
DGN [3] 0.168 ± 0.003 – 72.838 ± 0.417 86.680 ± 0.034 –
GSN [6] 0.101 ± 0.010 – – – –

CIN [5] 0.079 ± 0.006 – – – –
CRaWl [53] 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 – –
GIN-AK+ [68] 0.080 ± 0.001 – 72.19 ± 0.13 86.850 ± 0.057 –

SAN [36] 0.139 ± 0.006 – – 86.581 ± 0.037 76.691 ± 0.65
Graphormer [63] 0.122 ± 0.006 – – – –
K-Subgraph SAT [9] 0.094 ± 0.008 – – 86.848 ± 0.037 77.856 ± 0.104
EGT [29] 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
GPS (ours) 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180

features are not taken into consideration at all. Additionally, without reinforcing of the local graph
structure, the network can overfit to the PE/SE. This reiterates findings of Kreuzer et al. [36], where
considerably larger weights were assigned to the local attention.

We also find that although a vanilla PNA [13] generally outperforms GINE [26] and GatedGCN [7],
adding the PE and SE results in major performance boost especially for the GatedGCN. This is
consistent with results of Dwivedi et al. [16] and shows the importance of these encodings for gating.

Perhaps the necessity of a local message-passing module is due to the limited amount of graph data,
and scaling to colossal datasets [49] that we encounter in language and vision could change that.
Indeed, the Graphormer architecture [63] was able to perform very well on the full PCQM4Mv2
dataset without a local module. However, even large Transformer-based language models [8] and
vision models [25] can benefit from an added local aggregation and outperform pure Transformers.

Positional/Structural Encodings. Finally, we evaluate the effects of various PE/SE schemes,
Table 2b. We find them generally beneficial to downstream tasks, in concordance to the vast literature
on the subject (see Table 1). The benefits of the different encodings are very dataset dependant,
with the random-walk structural encoding (RWSE) being more beneficial for molecular data and the
Laplacian eigenvectors encodings (LapPE) being more beneficial in image superpixels. However,
using SignNet with DeepSets encoding [39] as an improved way of processing the LapPE seems to be
consistently successful across tasks. We hypothesize that SignNet can learn structural representation
using the eigenvectors, for example, to generate local heat-kernels that approximate random walks [2].
Last but not least we evaluate PEG-layer design [57] with Laplacian eigenmap.

4.2 Benchmarking GPS

We compare GPS against a set of popular message-passing neural networks (GCN, GIN, GatedGCN,
PNA, etc.), graph transformers (SAN, Graphormer, etc.), and other recent graph neural networks
with SOTA results (CIN, CRaWL, GIN-AK+, ExpC). To ensure diverse benchmarking tasks, we
use datasets from Benchmarking-GNNs [15], OGB [27] and its large-scale challenge [28], and
Long-Range Graph Benchmark [17], with more details given in Appendix A.1. We report the mean
and standard deviation over 10 random seeds if not explicitly stated otherwise.

Benchmarking GNNs [15]. We first benchmark our method on 5 tasks from Benchmarking GNNs
[15], namely ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER, shown in Table 3. We observe
that our GPS gives SOTA results on ZINC and the second best in 3 more datasets, showcasing the
ability to perform very well on a variety of synthetic tasks designed to test the model expressivity.

Open Graph Benchmark [27]. Next, we benchmark on all 4 graph-level tasks from OGB, namely
molhiv, molpcba, ppa, and code2, Table 4. On the molhiv dataset, we observed our model to suffer

8

Table 4: Test performance in graph-level OGB benchmarks [27]. Shown is the mean ± s.d. of 10 runs.
Models that were first pre-trained on another dataset or use an ensemble are not included here.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
AUROC ↑ Avg. Precision ↑ Accuracy ↑ F1 score ↑

GCN+virtual node 0.7599 ± 0.0119 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN+virtual node 0.7707 ± 0.0149 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026
GatedGCN-LSPE – 0.267 ± 0.002 – –
PNA 0.7905 ± 0.0132 0.2838 ± 0.0035 – 0.1570 ± 0.0032
DeeperGCN 0.7858 ± 0.0117 0.2781 ± 0.0038 0.7712 ± 0.0071 –
DGN 0.7970 ± 0.0097 0.2885 ± 0.0030 – –
GSN (directional) 0.8039 ± 0.0090 – – –
GSN (GIN+VN base) 0.7799 ± 0.0100 – – –
CIN 0.8094 ± 0.0057 – – –
GIN-AK+ 0.7961 ± 0.0119 0.2930 ± 0.0044 – –
CRaWl – 0.2986 ± 0.0025 – –
ExpC [62] 0.7799 ± 0.0082 0.2342 ± 0.0029 0.7976 ± 0.0072 –

SAN 0.7785 ± 0.2470 0.2765 ± 0.0042 – –
GraphTrans (GCN-Virtual) – 0.2761 ± 0.0029 – 0.1830 ± 0.0024
K-Subtree SAT – – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS (ours) 0.7880 ± 0.0101 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

Table 5: Evaluation on PCQM4Mv2 [28] dataset. For GPS evaluation, we treated the validation set of
the dataset as a test set, since the test-dev set labels are private. For more details refer to Appendix A.

Model PCQM4Mv2
Test-dev MAE ↓ Validation MAE ↓ Training MAE # Param.

GCN 0.1398 0.1379 n/a 2.0M
GCN-virtual 0.1152 0.1153 n/a 4.9M
GIN 0.1218 0.1195 n/a 3.8M
GIN-virtual 0.1084 0.1083 n/a 6.7M

GRPE [48] 0.0898 0.0890 n/a 46.2M
EGT [29] 0.0872 0.0869 n/a 89.3M
Graphormer [51] n/a 0.0864 0.0348 48.3M

GPS-small n/a 0.0938 0.0653 6.2M
GPS-medium n/a 0.0858 0.0726 19.4M

from overfitting, but to still outperform SAN, while other graph Transformers do not report results.
For the molpcba, ppa, and code2, GPS always ranks among the top 3 models, highlighting again the
versatility and expressiveness of the GPS approach. Further, GPS outperforms every other GT on all
4 benchmarks, except SAT on code2.

OGB-LSC PCQM4Mv2 [28]. The large-scale PCQM4Mv2 dataset has been a popular benchmark
for recent GTs, particularly due to Graphormer [63] winning the initial challenge. We report the
results in Table 5, observing significant improvements over message-passing networks at comparable
parameter budget. GPS also outperforms GRPE [48], EGT [29], and Graphormer [63] with less
than half their parameters, and with significantly less overfitting on the training set. Contrarily
to Graphormer, we do not need to precompute spatial distances from approximate 3D molecular
conformers [64], the RWSEs we utilize are graph-based only.

MalNet-Tiny. The MalNet-Tiny [21] dataset consists of function call graphs with up to 5,000 nodes.
These graphs are considerably larger than previously considered inductive graph-learning benchmarks,
which enables us to showcase scalability of GPS to much larger graphs than prior methods. Our GPS
reaches 92.72%± 0.7pp test accuracy when using Performer global attention. Interestingly, using
Transformer global attention leads to further improved GPS performance, 93.36%± 0.6pp (based on
10 runs), albeit at the cost of doubled run-time. In both cases, we used comparable architecture to
Freitas et al. [21], with 5 layers and 64 dimensional hidden node representation, and outperform their
best GIN model with 90% accuracy. See Appendix B for GPS ablation study on MalNet-Tiny.

Long-Range Graph Benchmark [17]. Finally, we evaluate the GPS method on a recent Long-Range
Graph Benchmark (LRGB) suite of 5 datasets that are intended to test a method’s ability to capture
long-range dependencies in the input graphs. We abide to the ~500k model parameter budget and

9

Table 6: Test performance on long-range graph benchmarks (LRGB) [17]. Shown is the mean ± s.d. of
4 runs. The first, second, and third best are highlighted.
∗SAN on COCO-SP exceeded 60h time limit on an NVidia A100 GPU system.

Model PascalVOC-SP COCO-SP Peptides-func Peptides-struct PCQM-Contact
F1 score ↑ F1 score ↑ AP ↑ MAE ↓ MRR ↑

GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.5930 ± 0.0023 0.3496 ± 0.0013 0.3234 ± 0.0006
GINE 0.1265 ± 0.0076 0.1339 ± 0.0044 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
GatedGCN 0.2873 ± 0.0219 0.2641 ± 0.0045 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3218 ± 0.0011
GatedGCN+RWSE 0.2860 ± 0.0085 0.2574 ± 0.0034 0.6069 ± 0.0035 0.3357 ± 0.0006 0.3242 ± 0.0008

Transformer+LapPE 0.2694 ± 0.0098 0.2618 ± 0.0031 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020
SAN+LapPE 0.3230 ± 0.0039 0.2592 ± 0.0158* 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003
SAN+RWSE 0.3216 ± 0.0027 0.2434 ± 0.0156* 0.6439 ± 0.0075 0.2545 ± 0.0012 0.3341 ± 0.0006
GPS (ours) 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006

closely follow the experimental setup and hyperparameter choices of the graph Transformer baselines
tested in LRGB [17]. We keep the same node/edge encoders and model depth (number of layers),
deviating only in two aspects: i) we slightly decrease the size of hidden node representations to fit
within the parameter budget, ii) we employ cosine learning rate schedule as in our other experiments
(Section A.3). For each dataset we utilize LapPE positional encodings and GPS with GatedGCN [7]
and Transformer [55] components.

GPS improves over all evaluated baselines in 4 out of 5 LRGB datasets (Table 6). Additionally, we
conducted GPS ablation studies on PascalVOC-SP and Peptides-func datasets in the same fashion as
for 4 previous datasets in Table 2, presented in Tables B.5 and B.6, respectively. For both datasets
the global attention, in form of Transformer or Performer, is shown to be a critical component of the
GPS in outperforming MPNNs. In the case of PascalVOC-SP, interestingly, the Laplacian PEs are
not beneficial, as without them the GPS scores even higher F1-score 0.3846, and PEG [57] relative
distance embeddings enable the highest score of 0.3956.

5 Conclusion

Our work is setting the foundation for a unified architecture of graph neural networks, with modular
and scalable graph Transformers and a broader understanding of the role of graphs with positional and
structural encodings. In our ablation studies, we demonstrated the importance of each module: the
Transformer, flexible message-passing, and rich positional and structural encodings all contributed to
the success of GPS on a wide variety of benchmarks. Indeed, considering 5 Benchmarking-GNN
tasks [15], 5 OGB(-LSC) tasks [27, 28], 5 LRGB tasks [17] and MalNet-Tiny, we outperformed
every graph Transformer on 11 out of 16 tasks while also achieving state-of-the-art on 8 of them. We
further showed that the model can scale to very large graphs of several thousand nodes, far beyond
any previous graph Transformer. By open-sourcing the GRAPHGPS package, we hope to accelerate
the research in efficient and expressive graph Transformers, and move the field closer to a unified
hybrid Transformer architecture for graphs.

Limitations. We find that graph transformers are sensitive to hyperparameters and there is no one-
size-fits-all solution for all datasets. We also identify a lack of challenging graph datasets necessitating
long-range dependencies where linear attention architectures could exhibit all scalability benefits.

Societal Impact. As a general graph representation learning method, we do not foresee imme-
diate negative societal outcomes. However, its particular application, e.g., in drug discovery or
computational biology, will have to be thoroughly examined for trustworthiness or malicious usage.

Acknowledgments and Disclosure of Funding

This work was partially funded by IVADO (Institut de valorisation des données) grant PRF-2019-
3583139727 and Canada CIFAR AI Chair [G.W.]. This research is supported by Nanyang Technolog-
ical University, under SUG Grant (020724-00001) [V.P.D.] and Samsung AI graph at Mila [M.G.].
The content provided here is solely the responsibility of the authors and does not necessarily represent
the official views of the funding agencies.

10

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. In International Conference on Learning Representations, 2021.

[2] Sebastian Andres, Jean-Dominique Deuschel, and Martin Slowik. Heat kernel estimates for
random walks with degenerate weights. Electronic Journal of Probability, 21:1–21, 2016.

[3] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and
Pietro Liò. Directional graph networks. In International Conference on Machine Learning,
pages 748–758. PMLR, 2021.

[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020.

[5] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021.

[6] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[7] Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv:1711.07553,
2017.

[8] Ivan Chelombiev, Daniel Justus, Douglas Orr, Anastasia Dietrich, Frithjof Gressmann, Alexan-
dros Koliousis, and Carlo Luschi. Groupbert: Enhanced transformer architecture with efficient
grouped structures. arXiv:2106.05822, 2021.

[9] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. Proceedings of the 39th International Conference on Machine Learning,
2022.

[10] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in Neural Information
Processing Systems, 2019.

[11] Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii
Likhosherstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten.
From block-Toeplitz matrices to differential equations on graphs: towards a general theory for
scalable masked transformers. arXiv:2107.07999, 2021.

[12] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with
performers. In 9th International Conference on Learning Representations, 2021.

[13] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

[14] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv:2012.09699, 2020.

[15] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv:2003.00982, 2020.

[16] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

[17] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Neural Information Processing
Systems (NeurIPS 2022), Track on Datasets and Benchmarks, 2022.

[18] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In
International Conference on Machine Learning, pages 2286–2296. PMLR, 2021.

11

[19] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1(1):1–11, 2009.

[20] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[21] Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for
graph representation learning. In 35th Conference on Neural Information Processing Systems:
Datasets and Benchmarks Track, 2021.

[22] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[23] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

[24] Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang.
CMT: Convolutional neural networks meet vision transformers. arXiv:2107.06263, 2021.

[25] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[26] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv:1905.12265, 2019.

[27] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
34th Conference on Neural Information Processing Systems, 2020.

[28] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
LSC: A large-scale challenge for machine learning on graphs. In 35th Conference on Neural
Information Processing Systems: Datasets and Benchmarks Track, 2021.

[29] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-
attention as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 655–665, 2022.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[31] Paras Jain, Zhanghao Wu, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention.
Advances in Neural Information Processing Systems, 34, 2021.

[32] Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. Ammus: A sur-
vey of transformer-based pretrained models in natural language processing. arXiv:2108.05542,
2021.

[33] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv:1609.02907, 2016.

[34] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, 2020.

[35] Ioannis Koutis and Huong Le. Spectral modification of graphs for improved spectral clustering.
Advances in Neural Information Processing Systems, 32, 2019.

[36] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Pruden-
cio Tossou. Rethinking graph transformers with spectral attention. In Advances in Neural
Information Processing Systems, 2021.

[37] Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My
body is a cage: the role of morphology in graph-based incompatible control. arXiv:2010.01856,
2020.

[38] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020.

12

[39] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
arXiv:2202.13013, 2022.

[40] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022.

[41] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[42] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

[43] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. arXiv:1905.11136, 2019.

[44] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding graph
structure in transformers. arXiv:2106.05667, 2021.

[45] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural
networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, pages 4602–4609.
AAAI Press, 2019.

[46] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673. PMLR, 2019.

[47] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020.

[48] Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung won Hwang. GRPE:
Relative positional encoding for graph transformer. arXiv:22201.12787, 2022.

[49] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[50] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv:2003.04078,
2020.

[51] Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang
Liu, Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling
datasets. arXiv:2203.04810, 2022.

[52] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021.

[53] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d
convolutions on random walks. arXiv:2102.08786, 2021.

[54] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
arXiv:2111.14522, 2021.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[56] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[57] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional
encoding for more powerful graph neural networks. In International Conference on Learning
Representations, 2022.

[58] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv:2006.04768, 2020.

13

[59] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

[60] Scott A Wildman and Gordon M Crippen. Prediction of physicochemical parameters by atomic
contributions. Journal of chemical information and computer sciences, 39(5):868–873, 1999.

[61] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[62] Mingqi Yang, Renjian Wang, Yanming Shen, Heng Qi, and Baocai Yin. Breaking the expression
bottleneck of graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
2022.

[63] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances
in Neural Information Processing Systems, 2021.

[64] Chengxuan Ying, Mingqi Yang, Shuxin Zheng, Guolin Ke, Shengjie Luo, Tianle Cai, Chenglin
Wu, Yuxin Wang, Yanming Shen, and Di He. First place solution of KDD Cup 2021 & OGB
large-scale challenge graph prediction track. arXiv:2106.08279, 2021.

[65] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks. In
Advances in Neural Information Processing Systems, 2020.

[66] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed.
Big Bird: Transformers for longer sequences. In Advances in Neural Information Processing
Systems, 2020.

[67] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34, 2021.

[68] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss limitations in Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] We provide a sketch

in Section 3.4 and more details in Appendix C.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Code, data,
and instructions are available in the supplementary material. We also include the
performance traces/logs from our benchmarking experiments, supporting the results
reported herein.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We describe the datasets in Appendix A.1, splits in Appendix A.2,
hyperparameters in Appendix A.3. Full configuration files are provided in the supple-
mentary material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We include standard deviations over several random
seeds depending on the dataset evaluation protocol, more details are in Appendix A.2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We elaborate on the compute and
used resources in Appendix A.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] For datasets see Appendix A.1, for

software see Appendix A.4.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The source code of GRAPHGPS is available in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The used benchmarking datasets come from:
the molecular domain with no personal information, anonymized source code (ogbg-
code2 and MalNet-Tiny), anonymized images (MNIST, CIFAR10), or are statistically
generated.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Experimental Details

A.1 Datasets description

Table A.1: Overview of the graph learning dataset [15, 27, 28, 21, 17] used in this study.

Dataset # Graphs Avg. # Avg. # Directed Prediction Prediction Metricnodes edges level task

ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

ogbg-molhiv 41,127 25.5 27.5 No graph binary classif. AUROC
ogbg-molpcba 437,929 26.0 28.1 No graph 128-task classif. Avg. Precision
ogbg-ppa 158,100 243.4 2,266.1 No graph 37-task classif. Accuracy
ogbg-code2 452,741 125.2 124.2 Yes graph 5 token sequence F1 score
PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

MalNet-Tiny 5,000 1,410.3 2,859.9 Yes graph 5-class classif. Accuracy

PascalVOC-SP 11,355 479.4 2,710.5 No inductive node 21-class classif. F1 score
COCO-SP 123,286 476.9 2,693.7 No inductive node 81-class classif. F1 score
PCQM-Contact 529,434 30.1 61.0 No inductive link link ranking MRR
Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

ZINC [15] (MIT License) consists of 12K molecular graphs from the ZINC database of commercially
available chemical compounds. These molecular graphs are between 9 and 37 nodes large. Each
node represents a heavy atom (28 possible atom types) and each edge represents a bond (3 possible
types). The task is to regress constrained solubility (logP) of the molecule. The dataset comes with a
predefined 10K/1K/1K train/validation/test split.

MNIST and CIFAR10 [15] (CC BY-SA 3.0 and MIT License) are derived from like-named image
classification datasets by constructing an 8 nearest-neighbor graph of SLIC superpixels for each image.
The 10-class classification tasks and standard dataset splits follow the original image classification
datasets, i.e., for MNIST 55K/5K/10K and for CIFAR10 45K/5K/10K train/validation/test graphs.

PATTERN and CLUSTER [15] (MIT License) are synthetic datasets sampled from Stochastic
Block Model. Unlike other datasets, the prediction task here is an inductive node-level classification.
In PATTERN the task is to recognize which nodes in a graph belong to one of 100 possible sub-graph
patterns that were randomly generated with different SBM parameters than the rest of the graph.
In CLUSTER, every graph is composed of 6 SBM-generated clusters, each drawn from the same
distribution, with only a single node per cluster containing a unique cluster ID. The task is to infer
which cluster ID each node belongs to.

ogbg-molhiv and ogbg-molpcba [27] (MIT License) are molecular property prediction datasets
adopted by OGB from MoleculeNet. These datasets use a common node (atom) and edge (bond)
featurization that represent chemophysical properties. The prediction task of ogbg-molhiv is binary
classification of molecule’s fitness to inhibit HIV replication. The ogbg-molpcba, derived from
PubChem BioAssay, targets to predict results of 128 bioassays in multi-task binary classification
setting.

ogbg-ppa [27] (CC-0 license) consists of protein-protein association (PPA) networks derived from
1581 species categorized to 37 taxonomic groups. Nodes represent proteins and edges encode the
normalized level of 7 different associations between two proteins. The task is to classify which of the
37 groups does a PPA network originate from.

ogbg-code2 [27] (MIT License) is comprised of abstract syntax trees (ASTs) derived from source
code of functions written in Python. The task is to predict the first 5 subtokens of the original
function’s name.

16

A small number of these ASTs are much larger than the average size in the dataset. Therefore we
truncated ASTs with over 1000 nodes and kept the first 1000 nodes according to their depth in the
AST. This impacted 2521 (0.5%) graphs in the dataset.

OGB-LSC PCQM4Mv2 [28] (CC BY 4.0 license) is a large-scale molecular dataset that shares the
same featurization as ogbg-mol* datasets. The task is to regress the HOMO-LUMO gap, a quantum
physical property originally calculated using Density Functional Theory. True labels for original
“test-dev” and “test-challange” dataset splits are kept private by the OGB-LSC challenge organizers.
Therefore for the purpose of this paper we used the original validation set as the test set, while we
left out random 150K molecules for our validation set.

PCQM4Mv2-Subset (under the original PCQM4Mv2 CC BY 4.0 license) is a subset of
PCQM4Mv2 [28] that we created for the purpose of our ablation study. We sub-sampled the
above-mentioned version of PCQM4Mv2 as follows; training set: 10%; validation set: 33%; test set:
unchanged. This resulted in retaining 446,405 molecular graphs in total.

MalNet-Tiny [21] (CC-BY license) is a subset of MalNet that is comprised of function call graphs
(FCGs) derived from Android APKs. This subset contains 5,000 graphs of up to 5,000 nodes, each
coming from benign software or 4 types of malware. The FCGs are stripped of any original node
or edge features, the task is to predict the type of the software based on the structure alone. The
benchmarking version of this dataset typically uses Local Degree Profile as the set of node features.

PascalVOC-SP and COCO-SP [17] (Custom license for Pascal VOC 2011 respecting Flickr terms
of use, and CC BY 4.0 license) are derived by SLIC superpixelization of Pascal VOC and MS COCO
image datasets. Both are node classification datasets, where each superpixel node belongs to a
particular object class.

PCQM-Contact [17] (CC BY 4.0) is derived from PCQM4Mv2 and respective 3D molecular
structures. The task is a binary link prediction, identifying pairs of nodes that are considered to be in
3D contact (<3.5Å) yet distant in the 2D graph (>5 hops). The default evaluation ranking metric used
is the Mean Reciprocal Rank (MRR).

Peptides-func and Peptides-struct [17] (CC BY-NC 4.0) are both composed of atomic graphs of
peptides retrieved from SATPdb. In Peptides-func the prediction is multi-label graph classification
into 10 nonexclusive peptide functional classes. While for Peptides-struct the task is graph regression
of 11 3D structural properties of the peptides.

A.2 Dataset splits and random seeds

All evaluated benchmarks define a standard train/validation/test dataset split. We follow these and
report mean performance and standard deviation from multiple execution runs with different random
seeds.

All main benchmarking results are based on 10 executed runs, except PCQM4Mv2 (for which we
show the result of a single random seed run) and LRGB (for which we use 4 seed). The OGB-
LSC [28] leaderboard for PCQM4Mv2 does not keep track of variance w.r.t. random seeds. This is
likely due to the size of the dataset, in our evaluation we had run 3 random seeds and the standard
deviation for GPS-small was 0.00034 which is below the presentation precision.

For ablation studies we used a reduce number of 4 random seeds due to computational constraints,
while for PCQM4Mv2-Subset and MalNet-Tiny we used 3 random seeds. All experiments in the
ablation studies were run from scratch, results from the main text (with 10 repeats) were not reused.

A.3 Hyperparameters

In our hyperparameter search, we experimented with a variety of positional and structural encodings,
MPNN types, global attention mechanisms and their hyperparameters. Considering the large number
of hyperparameters and datasets, we did not perform an exhaustive search or a grid search beyond
the ablation studies presented in the main text, Section 4.1. We have extrapolated from those results
and established the PE/SE type and layer types for the remaining datasets. For each dataset we then
adjusted the number of layers, dimensionality d`, and other remaining hyperparameters based on
hyperparameters reported in the related literature, or eventually based on validation performance using

17

“line search” along one of the hyperparameters at a time. Namely, we followed several hyperparameter
choices of SAN [36], SAT [9], Graphormer [63], and Freitas et al. [21].

For benchmarking datasets from Dwivedi et al. [15] we followed the most commonly used parameter
budgets: up to 500k parameters for ZINC, PATTERN, and CLUSTER; and ~100k parameters for
MNIST and CIFAR10.

The final hyperparameters are presented in Tables A.2, A.3, A.4, A.5, together with the number
of parameters and median wall-clock run-time for node encoding precomputation, one full epoch
(including validation and test split evaluation), and the total time spent in the main loop. See
Section A.4 for more details on the run-time measurements.

In all our experiments we used AdamW [41] optimizer, with the default settings of β1 = 0.9,
β2 = 0.999, and ε = 10−8, together with linear “warm-up” increase of the learning rate at the
beginning of the training followed by its cosine decay. The length of the warm-up period, base
learning rate, and the total number of epoch were adjusted per dataset and are listed together with
other hyperparameters (Tables A.2, A.3, A.4, A.5).

Table A.2: GPS hyperparameters for five datasets from Dwivedi et al. [15].
Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER
GPS Layers 10 3 3 6 16
Hidden dim 64 52 52 64 48
GPS-MPNN GINE GatedGCN GatedGCN GatedGCN GatedGCN
GPS-GlobAttn Transformer Transformer Transformer Transformer Transformer
Heads 4 4 4 4 8
Dropout 0 0 0 0 0.1
Attention dropout 0.5 0.5 0.5 0.5 0.5
Graph pooling sum mean mean – –

Positional Encoding RWSE-20 LapPE-8 LapPE-8 LapPE-16 LapPE-10
PE dim 28 8 8 16 16
PE encoder linear DeepSet DeepSet DeepSet DeepSet

Batch size 32 16 16 32 16
Learning Rate 0.001 0.001 0.001 0.0005 0.0005
Epochs 2000 100 100 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5

Parameters 423,717 115,394 112,726 337,201 502,054
PE precompute 23s 96s 2.55min 28s 67s
Time (epoch/total) 21s / 11.67h 76s / 2.13h 64s / 1.78h 32s / 0.89h 86s / 2.40h

Table A.3: GPS hyperparameters for graph-level prediction datasets from OGB [27].
Hyperparameter ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
GPS Layers 10 5 3 4
Hidden dim 64 384 256 256
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN
GPS-GlobAttn Transformer Transformer Performer Performer
Heads 4 4 8 4
Dropout 0.05 0.2 0.1 0.2
Attention dropout 0.5 0.5 0.5 0.5
Graph pooling mean mean mean mean

Positional Encoding RWSE-16 RWSE-16 None None
PE dim 16 20 – –
PE encoder linear linear – –

Batch size 32 512 32 32
Learning Rate 0.0001 0.0005 0.0003 0.0001
Epochs 100 100 200 30
Warmup epochs 5 5 10 2
Weight decay 1e-5 1e-5 1e-5 1e-5

Parameters 558,625 9,744,496 3,434,533 12,454,066
PE precompute 58s 8.33min – –
Time (epoch/total) 96s / 2.64h 196s / 5.44h 276s / 15.33h 1919s / 16h

18

Table A.4: GPS hyperparameters for large-scale graph-level prediction dataset OGB-LSC
PCQM4Mv2 [28] and MalNet-Tiny [21]. GPS-medium architecture follows several hyperparameter
choices of Graphormer [63]. Listed run-times were measured on a single NVidia A100 GPU system.

Hyperparameter PCQM4Mv2 PCQM4Mv2 MalNet-Tiny(GPS-small) (GPS-medium)
GPS Layers 5 10 5
Hidden dim 304 384 64
GPS-MPNN GatedGCN GatedGCN GatedGCN
GPS-SelfAttn Transformer Transformer Performer
Heads 4 16 4
Dropout 0 0.1 0
Attention dropout 0.5 0.1 0.5
Graph pooling mean mean max

Positional Encoding RWSE-16 RWSE-16 None
PE dim 20 20 –
PE encoder linear linear –

Batch size 256 256 16
Learning Rate 0.0005 0.0002 0.0005
Epochs 100 150 150
Warmup epochs 5 10 10
Weight decay 0 0 1.00e-5

Parameters 6,152,001 19,414,641 527,237
PE precompute 47min 51min –
Time (epoch/total) 619s / 17.18h 1124s / 46.82h 46s / 1.92h

Table A.5: GPS hyperparameters for 5 datasets from Long Range Graph Benchmark (LRGB) [17].
Hyperparameter PascalVOC-SP COCO-SP PCQM-Contact Peptides-func Peptides-struct
GPS Layers 4 4 4 4 4
Hidden dim 96 96 96 96 96
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN
GPS-SelfAttn Transformer Transformer Transformer Transformer Transformer
Heads 8 8 4 4 4
Dropout 0 0 0 0 0
Attention dropout 0.5 0.5 0.5 0.5 0.5
Graph pooling – – – mean mean

Positional Encoding LapPE-10 LapPE-10 LapPE-10 LapPE-10 LapPE-10
PE dim 16 16 16 16 16
PE encoder DeepSet DeepSet DeepSet DeepSet DeepSet

Batch size 32 32 256 128 128
Learning Rate 0.0005 0.0005 0.0003 0.0003 0.0003
Epochs 300 300 200 200 200
Warmup epochs 10 10 10 5 5
Weight decay 0 0 0 0 0

Parameters 510,453 516,273 512,704 504,362 504,459
PE precompute 8.7min 1h 34min 5.23min 73s 73s
Time (epoch/total) 17.5s / 1.46h 213s / 17.8h 154s / 8.54h 6.36s / 0.35h 6.15s / 0.34h

A.4 Computing environment and used resources

Our implementation is based on PyG and its GraphGym module [20, 65] that are provided under
MIT License. All experiments were run in a shared computing cluster environment with varying
CPU and GPU architectures. These involved a mix of NVidia V100 (32GB), RTX8000 (48GB), and
A100 (40GB) GPUs. The resource budget for each experiment was 1 GPU, between 4 and 6 CPUs,
and up to 32GB system RAM. The only exception are ogbg-ppa and PCQM4Mv2 that due to their
size required up to 48GB system RAM.

To measure the run-time we used Python time.perf_counter() function. Due to the variation in
computing infrastructure and load on shared resources the execution time occasionally notably varied.
Therefore for our ablation studies we used only compute nodes with NVidia A100 GPUs, which
considerably improved the run-time consistency. We list the wall-clock run-time that is approximately
a median of the observed durations.

19

B Detailed ablation studies

Here we present the detailed ablation studies on impact of various MPNN, self attention, and positional
/ structural encoding types on GPS performance and run-time. In each case, we varied a single part of
the model at a time, keeping the rest of the GPS hyperparameters unchanged from the best selected
architecture for a given dataset. Results on ZINC are shown in Table B.1, on PCQM4Mv2-Subset in
Table B.2, on MalNet-Tiny in Table B.3, on CIFAR10 in Table B.4, on PascalVOC-SP in Table B.5,
and on Peptides-func in Table B.6. The first data row of each table reproduces results of the best
selected architecture with hyperparameters detailed in Appendix A; any deviations compared to the
main benchmarking results of Section 4.2 are well within the reported standard deviation. While
for benchmarking results we used 10 different random seeds, here we reduced the count due to
computational cost to 4 for ZINC and CIFAR10, and 3 for PCQM4Mv2-Subset and MalNet-Tiny.
All time measurements reported in this section are obtained on a system with identical hardware
configuration: 1x NVidia A100 (40GB) GPU and allocation of 4 AMD Milan 7413 (2.65GHz) CPU
cores.

Table B.1: GPS ablation study on ZINC dataset.
GPS-MPNN GPS-GlobAttn PE / SE type Test MAE ↓ # Param. Epoch / Total

GINE Transformer RWSE-20 0.070 ± 0.002 423,717 14s / 7.56h

GINE – RWSE-20 0.070 ± 0.004 257,317 7s / 3.90h
GINE Performer RWSE-20 0.071 ± 0.002 913,317 18s / 9.85h
GINE BigBird RWSE-20 0.071 ± 0.002 507,557 38s / 21.20h

– Transformer RWSE-20 0.217 ± 0.008 340,517 10s / 5.74h
GatedGCN Transformer RWSE-20 0.086 ± 0.002 551,077 18s / 9.86h

PNA Transformer RWSE-20 0.070 ± 0.003 680,805 17s / 9.46h

GINE Transformer – 0.113 ± 0.007 423,873 15s / 8.38h
GINE Transformer LapPE-8 0.116 ± 0.009 423,833 13s / 7.40h
GINE Transformer SignNetMLP-8 0.090 ± 0.007 486,957 21s / 11.61h
GINE Transformer SignNetDeepSets-37 0.079 ± 0.006 497,933 21s / 11.49h
GINE Transformer PEGLapEig-8 0.936 ± 0.143 426,379 16s / 8.83h

GatedGCN Transformer PEGLapEig-8 0.161 ± 0.006 553,739 20s / 11.07h

Table B.2: Ablation study on 10% subset of PCQM4Mv2 with GPS-small (Appendix A).
GPS-MPNN GPS-GlobAttn PE / SE type Test MAE ↓ # Param. Epoch / Total
GatedGCN Transformer RWSE-16 0.1159 ± 0.0004 6,152,001 61s / 1.70h

GatedGCN – RWSE-16 0.1213 ± 0.0002 4,297,601 45s / 1.26h
GatedGCN Performer RWSE-16 0.1142 ± 0.0005 5,855,601 83s / 2.30h
GatedGCN BigBird RWSE-16 0.1237 ± 0.0022 7,080,721 137s / 3.81h

– Transformer RWSE-16 0.3294 ± 0.0137 3,827,921 42s / 1.16h
GINE Transformer RWSE-16 0.1284 ± 0.0037 4,755,121 50s / 1.40h
PNA Transformer RWSE-16 0.1409 ± 0.0131 7,551,217 61s / 1.68h

GatedGCN Transformer – 0.1355 ± 0.0035 6,155,089 59s / 1.63h
GatedGCN Transformer LapPE-8 0.1201 ± 0.0003 6,153,889 63s / 1.76h
GatedGCN Transformer SignNetMLP-8 0.1158 ± 0.0008 6,217,013 87s / 2.41h
GatedGCN Transformer SignNetDeepSets-21 0.1144 ± 0.0002 6,225,845 146s / 4.05h
GatedGCN Transformer PEGLapEig-8 0.1209 ± 0.0003 6,162,390 67s / 1.86h

20

Table B.3: Ablation study on MalNet-Tiny. *Configuration required decreased batch size.
GPS-MPNN GPS-GlobAttn PE / SE type Accuracy ↑ # Param. Epoch / Total
GatedGCN Performer – 92.64 ± 0.78 527,237 46s / 1.90h

GatedGCN – – 92.23 ± 0.65 199,237 6s / 0.25h
GatedGCN *Transformer – 93.50 ± 0.41 282,437 94s / 3.94h
GatedGCN BigBird – 92.34 ± 0.34 324,357 130s / 5.43h

– Performer – 73.90 ± 0.58 421,957 41s / 1.73h
GINE Performer – 92.27 ± 0.60 463,557 46s / 1.92h
PNA Performer – 91.67 ± 0.70 592,149 47s / 1.97h

GatedGCN Performer LapPE-10 92.74 ± 0.45 527,701 47s / 1.91h
GatedGCN Performer RWSE-16 92.77 ± 0.31 527,425 46s / 1.90h
GatedGCN Performer SignNetMLP-10 92.57 ± 0.40 591,063 65s / 2.72h
GatedGCN Performer *SignNetDeepSets-32 93.13 ± 0.68 602,085 145s / 6.06h
GatedGCN Performer PEGLapEig-10 92.27 ± 0.29 528,842 48s / 1.98h

Table B.4: Ablation study on CIFAR10.
GPS-MPNN GPS-GlobAttn PE / SE type Accuracy ↑ # Param. Epoch / Total
GatedGCN Transformer LapPE-8 72.305 ± 0.344 112,726 62s / 1.72h

GatedGCN – LapPE-8 69.948 ± 0.499 79,654 43s / 1.18h
GatedGCN Performer LapPE-8 70.670 ± 0.338 239,554 77s / 2.14h
GatedGCN BigBird LapPE-8 70.480 ± 0.106 129,418 145s / 4h

– Transformer LapPE-8 68.862 ± 1.138 70,762 40s / 1.11h
GINE Transformer LapPE-8 71.105 ± 0.655 87,298 51s / 1.42h
PNA Transformer LapPE-8 73.418 ± 0.165 138,706 59s / 1.65h

GatedGCN Transformer – 71.488 ± 0.187 112,590 61s / 1.69h
GatedGCN Transformer RWSE-16 71.958 ± 0.398 112,798 61s / 1.69h
GatedGCN Transformer SignNetMLP-8 71.740 ± 0.569 175,850 116s / 3.21h
GatedGCN Transformer SignNetDeepSets-16 72.368 ± 0.340 186,558 148s / 4.12h
GatedGCN Transformer PEGLapEig-8 72.100 ± 0.460 113,529 67s / 1.87h

Table B.5: Ablation study on PascalVOC-SP of LRGB [17]. Shown is the mean ± s.d. of 4 runs.
GPS-MPNN GPS-GlobAttn PE / SE type F1 ↑ # Param. Epoch / Total
GatedGCN Transformer LapPE-10 0.3736 ± 0.0158 510,453 17s / 1.46h

GatedGCN – LapPE-10 0.3016 ± 0.0031 361,461 8s / 0.68h
GatedGCN Performer LapPE-10 0.3724 ± 0.0131 1,148,277 25s / 2.09h
GatedGCN BigBird LapPE-10 0.2762 ± 0.0069 585,333 42s / 3.46h

– Transformer LapPE-10 0.2762 ± 0.0111 322,677 12s / 1.04h
GINE Transformer LapPE-10 0.3160 ± 0.0024 397,173 14s / 1.18h
PNA Transformer LapPE-10 0.3677 ± 0.0108 625,029 18s / 1.49h

GatedGCN Transformer – 0.3846 ± 0.0156 510,069 17s / 1.4h
GatedGCN Transformer RWSE-16 0.3659 ± 0.0031 510,133 17s / 1.45h
GatedGCN Transformer SignNetMLP-10 0.3473 ± 0.0051 573,869 41s / 3.4h
GatedGCN Transformer SignNetDeepSets-48 0.3668 ± 0.0080 583,893 50s / 2.8h
GatedGCN Transformer PEGLapEig-10 0.3956 ± 0.0084 512,281 19s / 1.6h

21

Table B.6: Ablation study on Peptides-func of LRGB [17]. Shown is the mean ± s.d. of 4 runs.
GPS-MPNN GPS-GlobAttn PE / SE type AP ↑ # Param. Epoch / Total
GatedGCN Transformer LapPE-10 0.6535 ± 0.0041 504,362 6s / 0.35h

GatedGCN – LapPE-10 0.6159 ± 0.0048 355,370 3s / 0.16h
GatedGCN Performer LapPE-10 0.6475 ± 0.0056 748,970 11s / 0.61h
GatedGCN BigBird LapPE-10 0.5854 ± 0.0079 579,242 18s / 1.00h

– Transformer LapPE-10 0.6333 ± 0.0040 316,586 5s / 0.29h
GINE Transformer LapPE-10 0.6464 ± 0.0077 391,082 6s / 0.31h
PNA Transformer LapPE-10 0.6560 ± 0.0058 618,138 6s / 0.35h

GatedGCN Transformer – 0.6214 ± 0.0326 506,506 6s / 0.33h
GatedGCN Transformer RWSE-16 0.6486 ± 0.0071 503,418 6s / 0.35h
GatedGCN Transformer SignNetMLP-10 0.5840 ± 0.0140 568,726 41s / 3.39h
GatedGCN Transformer SignNetDeepSets-48 0.6314 ± 0.0059 577,802 49s / 2.73h
GatedGCN Transformer PEGLapEig-10 0.6461 ± 0.0047 508,718 19s / 1.60h

22

C Theoretical results

C.1 Why do we need PE and SE?

In this section, we review the 1-Weisfeiler-Leman test [59], their equivalence with MPNNs and the
limitations brought by this equivalent expressive power which eventually brings us to a statement
that indicates the theoretical need of equipping MPNNs or GTs with either or a combination of local,
relative or global PE/SE.

1-Weisfeiler-Leman test (1-WL). The 1-WL test is a node-coloring algorithm, in the hierarchy
of Weisfeiler-Leman (WL) heuristics for graph isomorphism, [59], which iteratively updates the
color of a node based on its 1-hop local neighborhood until an iteration when the node colors do not
change successively. The final histogram of the node colors determine whether the algorithm outputs
the two graphs to be ‘non-isomorphic’ (when the histograms of 2 graphs are distinct) or ‘possibly
isomorphic’ (when the histograms of 2 graphs are same). Although, it is not a sufficient test for
the graph isomorphism problem, the heuristic is simple to apply and has been popularly used in the
literature recently to quantify the expressive power of MPNNs.

Expressive power of MPNNs. Based on the equivalence of the aggregate and update functions of
MPNNs with the hash function of the 1-WL test, it was shown that MPNNs are at most powerful as
1-WL [61, 45], which is now popularly understood in the literature. Graph Isomorphism Network
[61] was developed by aligning the injectivity of the aggregate and update functions of GIN with
the injectivity of the 1-WL’s hash function, which makes it a 1-WL powerful MPNN. In direct
consequence, the power of the GIN is quantified as 1-WL expressive, i.e., if 1-WL outputs two graphs
to be ‘non-isomorphic’ then the GIN would output different feature vectors for the two graphs and
conversely, if 1-WL outputs two graphs to be ‘possibly isomorphic’, the feature embeddings of the
two graphs would be the same. We refer the readers to [61] for the details on this theoretical result.

Since the expressive power of MPNNs are at most 1-WL, it leads to a serious limitation in distin-
guishing a wide-variety of non-isomorphic graphs [50]. Note that numerous follow up works have
proposed GNNs that are strictly powerful than 1-WL, often moving away from the message passing
framework [22] on which MPNNs are based [45, 10, 43]. As higher-order GNNs are not within the
scope of this section, we limit our discussion only to MPNNs, such as GINs, which makes them
1-WL powerful. There are numerous examples on which MPNNs fail as a result [50]. Among such
cases, we consider two examples tasks: the task to differentiate between two non-isomorphic Circular
Skip Link (CSL) graphs, Figure C.1a, and the task to differentiate between two potential links, Figure
C.1b. The nodes in these examples do not have discriminating node features.

The CSL graph, Figure C.1a. In the CSL graph-pair [46], the two graphs Gskip(11, 2) and
Gskip(11, 3) differ in the length of skip-link of a node and are hence non-isomorphic. Since the
1-WL algorithm produces the same color for all the nodes in both graphs, MPNNs will generate
similar node colors. See the colors generated by 1-WL and MPNN in the second row of Figure C.1a.
However, the use of a global PE (eg. Laplacian PE [15]) assigns each node a unique color, as depicted
in the third row. Consequently, the feature embeddings of the two graphs which are the hash function
outputs of the collection of node colors are different, thus making the task to distinguish the graphs
successful. Similarly, the use of a local SE (e.g. diagonals of m-steps random walk) allows the
coloring of the nodes of the 2 graphs to be different [16] since it captures the difference of the skip
links of the two graphs successfully [42]. See the fourth row where the local SE based colors are
depicted on the nodes. Therefore, either of the specific local SE or global PE can help distinguish the
two graphs which cannot be learnt by 1-WL or MPNNs.

The Decalin molecular graph, Figure C.1b. In the Decalin graph, the node a is isomorphic to
node b, and so is the node c to node d. A 1-WL coloring of the nodes, and equivalently MPNN, would
generate one color for the node a, b and another color for c, d, see the second row in Figure C.1b. If
that task is to identify a potential link between the node-sets (a, d) and (b, d), the combination of the
node colors of the node-sets will produce the same embedding for the two links, thus making the
1-WL or MPNNs based coloring unsuitable to certain tasks [67]. A similar observation also follows
for the node coloring based on the aforementioned local SE [16], which is illustrated in the fourth row
in Figure C.1b. However, using a distance-based relative PE on the edges or an eigenvector-based

23

(a) (b)

Figure C.1: First Row: Example graphs with anonymous nodes, i.e., nodes do not have any
distinguishing node features. (a) A pair of Circular Skip Link (CSL) graphs [46] where the nodes
have skip links of 2 and 3 respectively. (b) A Decalin molecular graph which has two rings of all
Carbon atoms, thus with no distinguishing node features. Second Row: The nodes colored with the
feature generated by 1-WL [59, 61, 45]. Third Row: The nodes colored with the feature generated
by global PE [15]. Fourth Row: The nodes colored with the feature generated by local SE [16].
Note: The colors depicted on nodes in the graphs represent a unique feature vector generated, for a
given graph, from the corresponding PE/SE. Figure best visualized in color.

global PE would successfully differentiate the embeddings of the two links. Therefore, the relative
PE or the global PE which can help to distinguish between the two links cannot be learnt by 1-WL or
MPNNs.

We can then conclude the following statement based on the above discussion which provides a
theoretical basis for the need of PE and SE, as the PE and SE can be directly supplying essential
information for the task:

Proposition 1. Assuming no modification applied to MPNNs for a learning task, there exists
Positional Encodings (PE) and Structural Encoding (SE) which MPNNs are not guaranteed to learn.

24

C.2 Preserving edge information in the self-attention layer

In this section, we argue that an MPNN layer is able to propagate the information from edges to
nodes such that, when computing the attention between nodes, the global Attention (Transformer)
layer can infer whether two nodes are connected and what are the edge features between them.

Suppose an MPNN with the sum aggregator, with the update function as given below:

hl+1
u =

∑
v∈Nu

f(hlu, h
l
v, euv), (5)

where f is a learned function, e.g., an MLP; u is the index of a central node whose neighborhood is
being aggregated; v is the index of a neighbor of u; hlu the node features at layer l for node u, and
euv the edge features between nodes u and v.

We know from the Lemma 5 of Xu et al. [61] that the sum over a countable multiset is universal,
meaning it can map a unique multiset to any possible function. Let’s assume that hu is unique and
countable for every node u, which can be accomplised using all the Laplacian eigenvectors as PE.
Then, there exist a function f such that an encoding µuv that respects the following characteristics is
propagated to the nodes: (i) unique for the triplet {hu, hv, euv}, (ii) invariant to the permutation of u
and v, (iii) contains the information of eij , (iv) all information of µuv is preserved after the

∑
.

Hence, an Attention layer that follows the message-passing is able to infer whether two nodes are
connected since both nodes will contain the unique identifier µuv, and will also be able to infer the
edge features from it.

An example of such function µuv is the tensor product ⊗ of a one-hot encoding unique for each edge
ouv and the edge features euv. For example, if euv = [e1, e2, e3] and the edge is represented with
ouv = [0, 1, 0, 0], then µuv = ouv ⊗ euv = [0, 0, 0, e1, e2, e3, 0, 0, 0, 0, 0, 0] satisfies all the above
conditions. Although this function requires an exponential increase in the hidden dimension, this is
also the case for the Lemma 5 in Xu et al. [61].

25

D GPS schematics

D.1 GPS layer

Transf. / Performer
global attention layer

MPNN layer
(GatedGCN/GINE/PNA)

2-layer MLP

sum & BN

only GatedGCN
updates edge attrs
+ has internal
skip connection

+ sum & BN

external skip
connection for
GINE and PNA

dropout (if any) dropout (if any)

+ sum & BN

dropout (if any)

+

+

sum

Figure D.1: Modular GPS layer that combines local MPNN and global attention blocks. Local
MPNN encodes real edge features into the node-level hidden representations, while global attention
mechanism can implicitly make use of this information together with PE/SE to infer relation between
two nodes without explicit edge features. After each functional block (an MPNN layer, a global
attention layer, an MLP) we apply residual connections followed by batch normalization (BN) [30].
In the 2-layer MLP block we use ReLU activations and its inner hidden dimension is twice the layer-
input feature dimensionality d`. Note, similarly to Transformer, the input and output dimensionality
of the GPS-layer as a whole is the same.

GPS layer equations. In Section 3.3 of the main text we provide a simplify definition of the GPS
computational layer for clarity, here we additionally list the precise application of skip connections,
dropout, and batch normalization with learnable affine parameters:

X`+1,E`+1 = GPS`
(
X`,E`,A

)
(6)

computed as X̂`+1
M , E`+1 = MPNN`e

(
X`,E`,A

)
, (7)

X̂`+1
T = GlobalAttn`

(
X`
)
, (8)

X`+1
M = BatchNorm

(
Dropout

(
X̂`+1

M

)
+ X`

)
, (9)

X`+1
T = BatchNorm

(
Dropout

(
X̂`+1

T

)
+ X`

)
, (10)

X`+1 = MLP`
(
X`+1

M + X`+1
T

)
(11)

26

D.2 GPS algorithm

Algorithm 1 Algorithm for an L layer GPS network.
Input: Graph G = (V, E) with N nodes and E edges; Adjacency matrix A ∈ RN×N ; Node features
X ∈ RN×Dnode ; Edge features E ∈ RE×Dedge ; Local message passing model instance MPNNe; Global
attention model instance GlobalAttn; Positional Encoding function FPE; Structural Encoding
function FSE; Layer ` ∈ [0, L− 1].
Output: Node representations XL ∈ RN×D and edge representations EL ∈ RE×D, that can
downstream be composed with appropriate prediction head for graph, node, or edge -level prediction.

1. Pnode,Pedge,Snode,Sedge ← ∅
2. if FPE is relative then Pedge ← FPE(G) ∈ RE×DPE else Pnode ← FPE(G) ∈ RN×DPE

3. if FSE is relative then Sedge ← FSE(G) ∈ RE×DSE else Snode ← FSE(G) ∈ RN×DSE

4. X0 ← ⊕
node

(
NodeEncoder (X) ,Pnode,Snode

)
∈ RN×D

5. E0 ← ⊕
edge

(
EdgeEncoder (E) ,Pedge,Sedge

)
∈ RE×D

6. for ` = 0, 1, · · · , L− 1

(a) X̂`+1
M , E`+1 ← MPNN`e

(
X`,E`,A

)
(b) X̂`+1

T ← GlobalAttn`
(
X`
)

(c) X`+1
M ← BatchNorm

(
Dropout

(
X̂`+1

M

)
+ X`

)
(d) X`+1

T ← BatchNorm
(
Dropout

(
X̂`+1

T

)
+ X`

)
(e) X`+1 ← MLP`

(
X`+1

M + X`+1
T

)
7. return XL ∈ RN×D and EL ∈ RE×D

where
⊕

denotes an operator for combining the input node or edge features with their respective
positional and/or structural encoding, in practice this is a concatenation operator which can be
changed to sum or other operators; NodeEncoder and EdgeEncoder are dataset-specific initial
node and edge feature encoders potentially with learnable parameters; MPNNe and GlobalAttn have
their corresponding learnable parameters at each layer `; X̂`+1

M and X̂`+1
T denote the intermediate

node representations given by the local message passing module and the global attention module
respectively; and MLP` is a multi layer perceptron module with its own learnable parameters that
combines the intermediate X`+1

M and X`+1
T . Note that a relative FPE or FSE produces PE or SE for

each edge which are thence handled accordingly in lines 2 and 3 in Algorithm 1.

27

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Modular positional and structural encodings
	3.2 Why do we need PE and SE in MPNN?
	3.3 GPS layer: an MPNN+Transformer hybrid
	3.4 Theoretical expressivity

	4 Experiments
	4.1 Ablation studies
	4.2 Benchmarking GPS

	5 Conclusion
	A Experimental Details
	A.1 Datasets description
	A.2 Dataset splits and random seeds
	A.3 Hyperparameters
	A.4 Computing environment and used resources

	B Detailed ablation studies
	C Theoretical results
	C.1 Why do we need PE and SE?
	C.2 Preserving edge information in the self-attention layer

	D GPS schematics
	D.1 GPS layer
	D.2 GPS algorithm

