FROST: Flexible Round-Optimized
Schnorr Threshold Signatures

Chelsea Komlo
University of Waterloo, Zcash Foundation
ckomlo @uwaterloo.ca

Ian Goldberg
University of Waterloo
iang @uwaterloo.ca

December 22, 2020

Abstract

Unlike signatures in a single-party setting, threshold signatures require coop-
eration among a threshold number of signers each holding a share of a common
private key. Consequently, generating signatures in a threshold setting imposes
overhead due to network rounds among signers, proving costly when secret shares
are stored on network-limited devices or when coordination occurs over unreliable
networks. In this work, we present FROST, a Flexible Round-Optimized Schnorr
Threshold signature scheme that reduces network overhead during signing opera-
tions while employing a novel technique to protect against forgery attacks appli-
cable to similar schemes in the literature. FROST improves upon the state of the
art in Schnorr threshold signature protocols, as it can safely perform signing op-
erations in a single round without limiting concurrency of signing operations, yet
allows for true threshold signing, as only a threshold ¢ out of n possible partici-
pants are required for signing operations, such that ¢ < n. FROST can be used as
either a two-round protocol, or optimized to a single-round signing protocol with
a pre-processing stage. FROST achieves its efficiency improvements in part by
allowing the protocol to abort in the presence of a misbehaving participant (who
is then identified and excluded from future operations)—a reasonable model for
practical deployment scenarios. We present proofs of security demonstrating that
FROST is secure against chosen-message attacks assuming the discrete logarithm
problem is hard and the adversary controls fewer participants than the threshold.

1 Introduction

Threshold signature schemes are a cryptographic primitive to facilitate joint ownership
over a private key by a set of participants, such that a threshold number of participants

must cooperate to issue a signature that can be verified by a single public key. Thresh-
old signatures are useful across a range of settings that require a distributed root of trust
among a set of equally trusted parties.

Similarly to signing operations in a single-party setting, some implementations of
threshold signature schemes require performing signing operations at scale and un-
der heavy load. For example, threshold signatures can be used by a set of signers to
authenticate financial transactions in cryptocurrencies [16], or to sign a network con-
sensus produced by a set of trusted authorities [22]. In both of these examples, as the
number of signing parties or signing operations increases, the number of communi-
cation rounds between participants required to produce the joint signature becomes a
performance bottleneck, in addition to the increased load experienced by each signer.
This problem is further exacerbated when signers utilize network-limited devices or
unreliable networks for transmission, or protocols that wish to allow signers to partici-
pate in signing operations asynchronously. As such, optimizing the network overhead
of signing operations is highly beneficial to real-world applications of threshold signa-
tures.

Today in the literature, the best threshold signature schemes are those that rely on
pairing-based cryptography [6,7], and can perform signing operations in a single round
among participants. However, relying on pairing-based signature schemes is undesir-
able for some implementations in practice, such as those that do not wish to introduce a
new cryptographic assumption, or that wish to maintain backwards compatibility with
an existing signature scheme such as Schnorr signatures. Surprisingly, today’s best
non-pairing-based threshold signature constructions that produce Schnorr signatures
with unlimited concurrency [14,29] require at least three rounds of communication
during signing operations, whereas constructions with fewer network rounds [14] must
limit signing concurrency to protect against a forgery attack [10].

In this work, we present FROST, a Flexible Round-Optimized Schnorr Threshold
signature scheme' that addresses the need for efficient threshold signing operations
while improving upon the state of the art to ensure strong security properties without
limiting the parallelism of signing operations. FROST can be used as either a two-
round protocol where signers send and receive two messages in total, or optimized to a
(non-broadcast) single-round signing protocol with a pre-processing stage. FROST
achieves improved efficiency in the optimistic case that no participant misbehaves.
However, in the case where a misbehaving participant contributes malformed values
during the protocol, honest parties can identify and exclude the misbehaving partici-
pant, and re-run the protocol.

The flexible design of FROST lends itself to supporting a number of practical use
cases for threshold signing. Because the preprocessing round can be performed sep-
arately from the signing round, signing operations can be performed asynchronously;
once the preprocessing round is complete, signers only need to receive and eventu-
ally reply with a single message to create a signature. Further, while some threshold
schemes in the literature require all participants to be active during signing opera-
tions [9, 14], and refer to the threshold property of the protocol as merely a security
property, FROST allows any threshold number of participants to produce valid signa-

ISignatures generated using the FROST protocol can also be referred to as "FROSTy signatures”.

tures. Consequently, FROST can support use cases where a subset of participants (or
participating devices) can remain offline, a property that is often desirable for security
in practice.

Contributions. In this work, we present the following contributions.

e We review related threshold signature schemes and present a detailed analysis of
their performance and designs.

e We present FROST, a Flexible Round-Optimized Schnorr Threshold signature
scheme. FROST improves upon the state of the art for Schnorr threshold signa-
tures by defining a signing protocol that can be optimized to a (non-broadcast)
single-round operation with a preprocessing stage. Unlike many prior Schnorr
threshold schemes, FROST remains secure against known forgery attacks with-
out limiting concurrency of signing operations.

e We present a proof of security and correctness for an interactive two-round
variant of FROST, building upon proofs of security for prior related threshold
schemes. We then demonstrate how this proof extends to FROST in the single-
rounnd setting.

Organization. We present background information in Section 2; in Section 3 we
give an overview of related threshold Schnorr signature constructions. In Section 4
we review notation and security assumptions maintained for our work, and we intro-
duce FROST in Section 5. In Section 6 we give proofs of security and correctness for
FROST, and discuss operational considerations in Section 7. We conclude in Section 8.

2 Background

Let G be a group of prime order ¢ in which the Decisional Diffie-Hellman problem is
hard, and let g be a generator of G. Let H be a cryptographic hash function mapping

to Z;. We denote by = & Sthatais uniformly randomly selected from S.

2.1 Threshold Schemes

Cryptographic protocols called (¢, n)-threshold schemes allow a set of n participants
to share a secret s, such that any ¢ out of the n participants are required to cooperate
in order to recover s, but any subset of fewer than ¢ participants cannot recover any
information about the secret.

Shamir Secret Sharing. Many threshold schemes build upon Shamir secret shar-
ing [28], a (t,n)-threshold scheme that relies on Lagrange interpolation to recover a
secret. In Shamir secret sharing, a trusted central dealer distributes a secret s to n par-
ticipants in such a way that any cooperating subset of ¢ participants can recover the
secret. To distribute this secret, the dealer first selects ¢ — 1 coefficients aq,...,a;_1 at
random, and uses the randomly selected values as coefficients to define a polynomial
flz) =s+ Zf;} a;x’ of degree t — 1 where f(0) = s. The secret shares for each par-
ticipant P; are subsequently (4, f(¢)), which the dealer is trusted to distribute honestly
to each participant P, . .., P,. To reconstruct the secret, at least ¢ participants perform
Lagrange interpolation to reconstruct the polynomial and thus find the value s = f(0).

However, no group of fewer than ¢ participants can reconstruct the secret, as at least ¢
points are required to reconstruct a polynomial of degree t — 1.

Verifiable Secret Sharing. Feldman’s Verifiable Secret Sharing (VSS) Scheme [11]
builds upon Shamir secret sharing, adding a verification step to demonstrate the consis-
tency of a participant’s share with a public commitment that is assumed to be correctly
visible to all participants. To validate that a share is well formed, each participant vali-
dates their share using this commitment. If the validation fails, the participant can issue
a complaint against the dealer, and take actions such as broadcasting this complaint to
all other participants. FROST similarly uses this technique as well.

The commitment produced in Feldman’s scheme is as follows. As before in Shamir
secret sharing, a dealer samples ¢ — 1 random values (aq,...,a;—1), and uses these
values as coefficients to define a polynomial f of degree ¢ — 1 such that f(0) = s.
However, along with distributing the private share (4, f (7)) to each participant P;, the
dealer also distributes the public commitment C = (do, ..., Pt—1), where ¢pg = ¢°
and ¢; = g%i.

Note that in a distributed setting, each participant P; must be sure to have the same
view of C as all other participants. In practice, implementations guarantee consistency
of participants’ views by using techniques such as posting commitments to a central-
ized server that is trusted to provide a single view to all participants, or adding another
protocol round where participants compare their received commitment values to ensure
they are identical.

2.2 Threshold Signature Schemes

Threshold signature schemes leverage the (¢, n) security properties of threshold schemes,
but allow participants to produce signatures over a message using their secret shares
such that anyone can validate the integrity of the message, without ever reconstructing
the secret. In threshold signature schemes, the secret key s is distributed among the
n participants, while a single public key Y is used to represent the group. Signatures
can be generated by a threshold of ¢ cooperating signers. For our work, we require the
resulting signature produced by the threshold signature scheme to be valid under the
Schnorr signature scheme [27], which we introduce in Section 2.4.

Because threshold signature schemes ensure that no participant (or indeed any
group of fewer than ¢ participants) ever learns the secret key s, the generation of s
and distribution of shares s1, . . ., s,, often require generating shares using a less-trusted
method than relying on a central dealer. FROST instead makes use of a Distributed Key
Generation (DKG) protocol, which we describe in Section 2.3. Similarly, generating
Schnorr signatures in a threshold setting requires that the random nonce % be generated
in such a way that each participant contributes to but does not know the resulting k. To
perform this task, FROST uses additive secret sharing, which we now describe.

Additive Secret Sharing. While Shamir secret sharing and derived constructions
require shares to be points on a secret polynomial f where f(0) = s, an additive se-
cret sharing scheme allows a set of « participants to jointly compute a shared secret s
by each participant P; contributing a value s; such that the resulting shared secret is
s =Y., s, the summation of each participant’s share. Consequently, additive secret
sharing can be performed non-interactively; each participant directly chooses their own

s;. Benaloh and Leichter [4] generalize additive secret sharing to arbitrary monotone
access structures, and Cramer, Damgard, and Ishai [8] present a non-interactive mech-
anism, which we use in its simplest case, for participants to locally convert additive
shares of the form s = . s; to polynomial (Shamir) form, as /S\T are Shamir secret
shares of the same s, where the \; are Lagrange coefficients. In FROST, participants
use this technique during signing operations to non-interactively generate a nonce that

is Shamir secret shared among all signing participants.

2.3 Distributed Key Generation

Unlike threshold schemes such as Shamir secret sharing that rely on a trusted dealer,
Distributed Key Generation (DKG) ensures every participant contributes equally to the
generation of the shared secret. At the end of running the protocol, all participants share
a joint public key Y, but each participant holds only a share s; of the corresponding
secret s such that no set of participants smaller than the threshold knows s.

Pedersen [23] presents a two-round DKG where each participant acts as the central
dealer of Feldman’s VSS [11] protocol, resulting in n parallel executions of the pro-
tocol. Consequently, this protocol requires two rounds of communication between all
participants; after each participant selects a secret x;, they first broadcast a commit-
ment to x; to all other participants, and then send all other participants a secret share
of x -

Gennaro et al. [15] demonstrate a weakness of Pedersen’s DKG [23] such that a
misbehaving participant can bias the distribution of the resulting shared secret by is-
suing complaints against a participant affer seeing the shares issued to them by this
participant, thereby disqualifying them from contributing to the key generation. To
address this issue, the authors define a modification to Pedersen’s DKG to utilize both
Feldman’s VSS as well as a verifiable secret sharing scheme by Pedersen [24] result-
ing in a three-round protocol. To prevent adversaries from adaptively disqualifying
participants based on their input, the authors add an additional “commitment round”,
such that the value of the resulting secret is determined after participants perform this
commitment round (before having revealed their inputs).

In a later work, Gennaro et al. [14] prove that Pedersen’s DKG as originally de-
scribed [23] is secure enough in certain contexts, as the resulting secret is sufficiently
random despite the chance for bias from a misbehaving participant adaptively select-
ing their input after seeing inputs from other participants. However, Pedersen’s DKG
requires larger security parameters to achieve the same level of security as the modi-
fied variant by Gennaro et al. [15] that requires the additional commitment round. In
short, the two-round Pedersen’s DKG [23] requires a larger group to be as secure as
the three-round DKG presented by Gennaro et al. [15].

2.4 Schnorr Signatures

Often, it is desirable for signatures produced by threshold signing operations to be in-
distinguishable from signatures produced by a single participant, for reasons of back-
wards compatibility and to prevent privacy leaks. For our work, we require signatures

produced by FROST signing operations to be indistinguishable from Schnorr signa-
tures [27], and thus verifiable using the standard Schnorr verification operation.

A Schnorr signature is generated over a message m, under secret key s € Z, and
public key Y = ¢° € G, (employing a signature format similar to EdDSA [17]) by the
following steps:

1. Sample a random nonce & & Z4; compute the commitment R = @ cG
2. Compute the challenge ¢ = H(R,Y,m)

3. Using the secret key s, compute the response z = k + s - ¢ € Z,

4. Define the signature over m to be o = (R, 2)

Validating the integrity of m using the public key Y and the signature o is per-
formed as follows:

1. Parse o as (R, z); derive ¢ = H(R,Y, m)
2. Compute R’ =¢*-Y ¢

? . . .
3. Output 1 if R = R’ to indicate success; otherwise, output 0.

Schnorr signatures are simply the standard ¥-protocol proof of knowledge of the
discrete logarithm of Y, made non-interactive (and bound to the message m) with the
Fiat-Shamir transform.

2.5 Attacks on Parallelized Schnorr Multisignatures

Attack via Wagner’s Algorithm. We next describe an attack recently introduced by
Drijvers et al. [10] against some two-round Schnorr multisignature schemes when the
adversary is allowed to open multiple simultaneous signing operations and describe
how this attack applies to a threshold setting. This attack can be performed when the
adversary has control over either choosing the message m to be signed, or the ability to
adaptively choose its own individual commitments used to determine the group com-
mitment R after seeing commitments from all other signing parties. In Section 5.2 and
Section 6 we discuss how FROST avoids the attack.

Successfully performing the Drijvers attack? requires finding a hash output ¢* =
H(R*,Y,m*) that is the sum of T' other hash outputs ¢* = Z?:l H(R;,Y,m;)
(where c* is the challenge, m; the message, Y the public signing key, and R; the
group’s commitment corresponding to a standard Schnorr signature as described in
Section 2.4). To find T hash outputs that sum to c*, the adversary can open many (say
T number of) parallel simultaneous signing operations, varying in each of the T" paral-
lel executions either its individual commitment used to determine R; or m;. Drijvers et
al. use the k-tree algorithm of Wagner [30] to find such hashes and perform the attack
in time O(k - b-2%/(0+18%)) where ks = T'+ 1, and b is the bitlength of the order of the
group.

Although this attack was proposed in a multisignature n-out-of-n setting, this at-
tack applies similarly in a threshold ¢-out-of-n setting with the same parameters for

2Note that we slightly modify this attack to include the public key Y™ as an input into H to match the
notation used in this paper.

an adversary that controls up to ¢ — 1 participants. We note that the threshold scheme
instantiated using Pedersen’s DKG by Gennaro et al. [14] is likewise affected by this
technique and so similarly has an upper bound to the amount of parallelism that can be
safely allowed.

In Section 5.2 we discuss how FROST avoids the attack by ensuring that an attacker
will not gain an advantage by adaptively choosing its own commitment (or that of any
other of the signing participants) used to determine [7;, or adaptively selecting the
message being signed.

Drijvers et al. [10] also present a metareduction for the proofs of several Schnorr
multisignature schemes that use a generalization of the forking lemma with rewinding,
highlighting that the security of this proof technique does not extend to a multi-party
setting. Because our proofs of security for FROST (presented in Section 6) reduce to
the hardness of the discrete logarithm problem for the underlying group, as opposed to
the one-more discrete logarithm problem, the metareduction presented by Drijvers et
al. [10] does not apply to our proof strategy.

Attack via ROS Solver. Benhamouda et al. [5] recently presented a polynomial-
time algorithm that solves the ROS (Random inhomogeneities in a Overdetermined
Solvable system of linear equations) problem. As first described by Schnorr [26],
the ROS problem challenges an adversary to find an (¢ + 1) x ¢ submatrix of rank
¢, when given a system of n > /£ linear equations modulo ¢ with ¢ unknowns and
random constant terms. Benhamouda et al. show how to solve the ROS in expected
polynomial time when ¢ > lgq. Solving the ROS problem in the setting of Schnorr
multisignatures enables an adversary that is allowed to open ¢ simultaneous connec-
tions to an honest participant with inputs my, ..., m, to produce a (¢ + 1)™ signature
without asking the participant for a signature on my4;. The authors demonstrate that
threshold schemes using Gennaro et al.’s DKG [15] and multisignature schemes such
as two-round MusSig [21] are not secure against their ROS-solving algorithm. How-
ever, the authors conclude that (the current version of) FROST is not affected by their
ROS-solving algorithm.

3 Related Work

We now review prior threshold schemes with a focus on Schnorr-based designs, and
split our review into robust and non-robust schemes. Robust schemes ensure that so
long as t participants correctly follow the protocol, the protocol is guaranteed to com-
plete successfully, even if a subset of participants (at most n — t) contribute malformed
shares. Conversely, designs that are not robust simply abort after detecting any partici-
pant misbehaviour.

Robust Threshold Schemes. Stinson and Strobl [29] present a threshold signa-
ture scheme producing Schnorr signatures, using the modification of Pedersen’s DKG
presented by Gennaro et al. [15] to generate both the secret key s during key gener-
ation as well as the random nonce k for each signing operation. This construction
requires at minimum four rounds for each signing operation (assuming no participant
misbehaves): three rounds to perform the DKG to obtain k, and one round to distribute
signature shares and compute the group signature. Each round requires participants to

send values to every other participant.

Gennaro et al. [14] present a threshold Schnorr signature protocol that uses a mod-
ification of Pedersen’s DKG [23] to generate both s during key generation and the
random nonce k for signing operations. However, their construction requires all n
signers to participate in signing, while the adversary is allowed to control up to the
given threshold number of participants. Recall from Section 2.3 that Pedersen’s DKG
requires two rounds; this construction requires an additional round for signing opera-
tions when all participants are equally trusted. Each round requires that all participants
send values to all other participants. The authors also discuss an optimization that
leverages a signature aggregator role, an entity trusted to gather signatures from each
participant, perform validation, and publish the resulting signature, a role we also adopt
in our work. In their optimized variant, participants can perform Pedersen’s DKG to
generate multiple & values in a pre-processing stage independently of performing sign-
ing operations. In this variant, to compute ¢ signatures, signers first perform two rounds
of ¢ parallel executions of Pedersen’s DKG, thereby generating ¢ random nonces. The
signers can then store these pre-processed values to later perform ¢ single-round sign-
ing operations.

Our work builds upon the key generation stage of Gennaro et al. [14]; we use a
variant of Pedersen’s DKG for key generation with a requirement that in the case of
misbehaviour, the protocol aborts and the cause investigated out of band. However,
FROST does not perform a DKG during signing operations as is done in both of the
above schemes, but instead make use of additive secret sharing and share conversion.
Consequently, FROST trades off robustness for more efficient signing operations, such
that a misbehaving participant can cause the signing operation to abort. However, such
a tradeoff is practical to many real-world settings.

Further, because FROST does not provide robustness, FROST is secure so long as
the adversary controls fewer than the threshold ¢ participants, an improvement over
robust designs, which can at best provide security for t < n/2 [15].

Non-Robust Threshold Schemes. FROST is not unique in trading off favouring
increased network efficiency over robustness. Gennaro and Goldfeder [12] present a
threshold ECDSA scheme that similarly requires aborting the protocol in the case of
participant misbehaviour. Their signing construction uses a two-round DKG to gener-
ate the nonce required for the ECDSA signature, leveraging additive-to-multiplicative
share conversion. This DKG has been also applied in a Schnorr threshold scheme
context to generate the random nonce for more efficient distributed key generation op-
erations [18] in combination with threshold Schnorr signing operations [29]. In later
work [13], Gennaro and Goldfeder define an optimization to a single-round ECDSA
signing operation with a preprocessing stage, which assumes the protocol will abort in
the case of failure or participant misbehaviour. Their end-to-end protocol with identi-
fiable aborts has eight network rounds, six of which require broadcasting to all other
signing participants, and two of which require performing pairwise multiplicative-to-
additive share conversion protocols. Further, while the protocol can be optimized into
a preprocessing phase, the choice of the signing coalition must be determined at the
time of preprocessing. FROST defines a more efficient preprocessing phase as secret
nonces can be generated in a distributed manner in the preprocessing phase entirely
non-interactively. Further, participants can “mix” preprocessed values across different

signing coalitions, as FROST requires that the choice for the signing coalition be made
only during the signing stage.

Recent work by Damgard et al. [9] define an efficient threshold ECDSA construc-
tion that similarly requires aborting in the case of misbehaviour. Their design relies on
generating a blinding factor d + m - e such that where d and e are 2t secret sharings of
zero, such that the entire binding factor evaluates to zero when all signing parties are
honest and agree on m. This approach is similar to FROST in that signature shares are
bound to the message and to the set of signing parties. However, the security of their
scheme requires the majority of participants to be honest, and n > 2¢+ 1. Further, their
scheme requires all n participants take part in signing operations, where the threshold
t is simply a security parameter.

Similarly to FROST, Abidin, Aly, and Mustafa [1] present a design for authentica-
tion between devices, and use additive secret sharing to generate the nonce for Schnorr
signatures in a threshold setting, a technique also used by FROST. However, the authors
do not consider the Drijvers attack and consequently their design is similarly limited to
restricted levels of parallelism. Further, their design does not include validity checks
for responses submitted by participants when generating signatures and consequently
does not detect nor identify misbehaving participants.

FROST improves upon prior work in Schnorr threshold schemes by providing a
single-round signing variant with a preprocessing stage that is agnostic to the choice
of the signing coalition. Further, the number of signing participants in FROST is re-
quired to be simply some ¢ < n, while remaining secure against the Drijvers attack and
misbehaving participants who do not correctly follow the protocol.

4 Preliminaries

Let n be the number of participants in the signature scheme, and ¢ denote the threshold
of the secret-sharing scheme. Let ¢ denote the participant identifier for participant P;
where 1 < ¢ < n. Let s; be the long-lived secret share for participant P;. Let Y denote
the long-lived public key shared by all participants in the threshold signature scheme,
and let Y; = ¢° be the public key share for the participant P;. Finally, let m be the
message to be signed.

Let o be the number of participants performing a signing operation, where ¢t < o <
n. Foraset S = {p1,...,pa} of « participant identifiers in the signing operation, let
A = H?:l, ki # denote the Lagrange coefficient corresponding to participant %
for interpolating over S. Note that the information to derive these values depends on
which « (out of n) participants are selected, and uses only the participant identifiers,
and not their shares.>

Security Assumptions. We maintain the following assumptions, which implemen-
tations should account for in practice.
- Message Validation. We assume every participant checks the validity of the message

m to be signed before issuing its signature share.

3Note that if n is small, the Lagrange coefficients for every possible combination of signers S can be
precomputed as a performance optimization.

- Reliable Message Delivery. We assume messages are sent between participants using
a reliable network channel.

- Participant Identification. In order to report misbehaving participants, we require
that values submitted by participants to be identifiable within the signing group.
Implementations can enforce this using a method of participant authentication within
the signing group.*

5 FROST: Flexible Round-Optimized Schnorr Thresh-
old Signatures

We now present FROST, a Flexible Round-Optimized Schnorr Threshold signature
scheme that minimizes the network overhead of producing Schnorr signatures in a
threshold setting while allowing for unrestricted parallelism of signing operations and
only a threshold number of signing participants.

Efficiency over Robustness. As described in Section 3, prior threshold signature
constructions [14,29] provide the property of robustness; if one participant misbehaves
and provides malformed shares, the remaining honest participants can detect the misbe-
haviour, exclude the misbehaving participant, and complete the protocol, so long as the
number of remaining honest participants is at least the threshold . However, in settings
where one can expect misbehaving participants to be rare, threshold signing protocols
can be relaxed to be more efficient in the “optimistic” case that all participants honestly
follow the protocol. In the case that a participant does misbehave, honest participants
can identify the misbehaving participant and abort the protocol, and then re-run the
protocol after excluding the misbehaving participant. FROST trades off robustness in
the protocol for improved round efficiency in this way.

Signature Aggregator Role. We instantiate FROST using a semi-trusted signature
aggregator role, denoted as S.A. Such a role allows for less communication overhead
between signers and is often practical in a real-world setting. However, FROST can be
instantiated without a signature aggregator; each participant simply performs a broad-
cast in place of S.A performing coordination.

The signature aggregator role can be performed by any participant in the protocol,
or even an external party, provided they know the participants’ public-key shares Y.
S A is trusted to report misbehaving participants and to publish the group’s signature
at the end of the protocol. If SA deviates from the protocol, the protocol remains
secure against adaptive chosen message attacks, as S.A is not given any more of a
privileged view than the adversary we model in our proof of security for FROST in
Section 6. A malicious S A does have the power to perform denial-of-service attacks
and to falsely report misbehaviour by participants, but cannot learn the private key or
cause improper messages to be signed. Note this signature aggregator role is also used
in prior threshold signature constructions in the literature [14] as an optimization.

4For example, authentication tokens or TLS certificates could serve to authenticate participants to one
another.

10

5.1 Key Generation

To generate long-lived key shares in our scheme’s key generation protocol, FROST
builds upon Pedersen’s DKG for key generation; we detail these protocol steps in Fig-
ure 1. Note that Pedersen’s DKG is simply where each participant executes Feldman’s
VSS as the dealer in parallel, and derives their secret share as the sum of the shares
received from each of the n VSS executions. In addition to the base Pedersen DKG
protocol, FROST additionally requires each participant to demonstrate knowledge of
their secret a;o by providing other participants with proof in zero knowledge, instanti-
ated as a Schnorr signature, to protect against rogue-key attacks [2] in the setting where
t>n/2.

To begin the key generation protocol, a set of participants must be formed using
some out-of-band mechanism decided upon by the implementation. After participating
in the Ped-DKG protocol, each participant P; holds a value (i, s;) that is their long-
lived secret signing share. Participant P;’s public key share Y; = g® is used by other
participants to verify the correctness of P;’s signature shares in the following signing
phase, while the group public key Y can be used by parties external to the group to
verify signatures issued by the group in the future.

View of Commitment Values. As required for any multi-party protocol using
Feldman’s VSS, the key generation stage in FROST similarly requires participants to
maintain a consistent view of commitments C_"i, 1 <7 < nissued during the execution
of Ped-DKG. In this work, we assume participants broadcast the commitment values
honestly (e.g., participants do not provide different commitment values to a subset of
participants); recall Section 2.1 where we described techniques to achieve this guaran-
tee in practice.

Security tradeoffs. While Gennaro et al. [15] describe the “Stop, Kill, and Rewind”
variant of Ped-DKG (where the protocol terminates and is re-run if misbehaviour is de-
tected) as vulnerable to influence by the adversary, we note that in a real-world setting,
good security practices typically require that the cause of misbehaviour is investigated
once it has been detected; the protocol is not allowed to terminate and re-run continu-
ously until the adversary finds a desirable output. Further, many protocols in practice
do not prevent an adversary from aborting and re-executing key agreement at any point
in the protocol; adversaries in protocols such as the widely used TLS protocol can skew
the distribution of the resulting key simply by re-running the protocol.

However, implementations wishing for a robust DKG can adapt our key generation
protocol to the robust construction presented by Gennaro et al. [15]. Note that the
efficiency of the DKG for the key generation phase is not extremely critical, because
this operation must be done only once per key generation for long-lived keys. For the
per-signature operations, FROST optimizes the generation of random values without
utilizing a DKG, as discussed next.

5.2 Threshold Signing with Unrestricted Parallelism

We now introduce the signing protocol for FROST. This operation builds upon known
techniques in the literature [1, 14] by employing additive secret sharing and share con-
version to non-interactively generate the nonce value for each signature. However,

11

FROST KeyGen
Round 1

1. Every participant P; samples ¢ random values (ao, - - . , @i(t—1))) & Z,, and
uses these values as coefficients to define a degree ¢ — 1 polynomial

filw) = g aiga?.
2. Every P; computes a proof of knowledge to the corresponding secret a;o by

calculating o; = (R;, j1;), such that k & Z,, R; = g*,
¢ = H(i,®,9%°, R;), u; = k + ajp - ¢;, with ® being a context string to
prevent replay attacks.

3. Every participant P; computes a public commitment C; = (Bi0s - -+ s Di(t—1))»
where ¢;; = g%, 0<j <t -1

4. Every P; broadcasts d», o; to all other participants.

5. Upon receiving Cy, oy from participants 1 < ¢ < n, ¢ # i, participant P,
. .,

verifies oy = (Ry, 11¢), aborting on failure, by checking Ry = g Dy
where ¢, = H (¢, @, ¢g0, Ry).

Upon success, participants delete {0y : 1 < ¢ < n}.

Round 2

1. Each P; securely sends to each other participant Py a secret share (¢, f;(¢)),
deleting f; and each share afterward except for (7, f;(7)), which they keep
for themselves.

i i o fe(d) Loppt—1 43" mod g .
2. Each P; verifies their shares by calculating: g/¢*) =[], — ¢, , aborting

if the check fails.

3. Each P; calculates their long-lived private signing share by computing
si = Yy fe(i), stores s; securely, and deletes each f(i).

4. Each P; calculates their public verification share Y; = ¢, and the group’s
public key Y = H?Zl ®j0. Any participant can compute the public

verification share of any other participant by calculating
n t—1

=TI

j=1k=0

Figure 1: KeyGen. A distributed key generation (DKG) protocol that builds upon the
DKG by Pedersen [23]. Our variant includes a protection against rogue key attacks
by requiring each participant to prove knowledge of their secret value commits, and
requires aborting on misbehaviour.

12

Preprocess(m) — (i, ((Dij, Eij))7-1)
Each participant P, € {1,...,n} performs this stage prior to signing. Let j be
a counter for a specific nonce/commitment share pair, and 7 be the number of
pairs generated at a time, such that 7 signing operations can be performed before
performing another preprocess step.

1. Create an empty list L;. Then, for 1 < j < 7, perform the following:

l.a Sample single-use nonces (d;;, €;;) & Zy X Ly

1.b Derive commitment shares (D;;, E;;) = (g%

7, 9°7).
1.c Append (D;;, E;;) to L;. Store ((d;j;, D;j), (eij, Eij;)) for later use in

signing operations.

2. Publish (i, L;) to a predetermined location, as specified by the
implementation.

Figure 2: FROST Preprocessing Protocol

signing operations in FROST additionally leverage a binding technique to avoid known
forgery attacks without limiting concurrency. We present FROST signing in two parts:
a pre-processing phase and a single-round signing phase. However, these stages can be
combined for a single two-round protocol if desired.

As a reminder, the attack of Drijvers et al. [10] requires the adversary to either
see the victim’s T' commitment values before selecting their own commitment, or to
adaptively choose the message to be signed, so that the adversary can manipulate the
resulting challenge c for the set of participants performing a group signing operation.
To prevent this attack without limiting concurrency, FROST “binds” each participant’s
response to a specific message as well as the set of participants and their commitments
used for that particular signing operation. In doing so, combining responses over differ-
ent messages or participant/commitment pairs results in an invalid signature, thwarting
attacks such as those of Drijvers et al.

Preprocessing Stage. We present in Figure 2 a preprocessing stage where partic-
ipants generate and publish m commitments at a time. In this setting, 7w determines
the number of nonces that are generated and their corresponding commitments that are
published in a single preprocess step. Implementations that do not wish to cache com-
mitments can instead use a two-round signing protocol, where participants publish a
single commitment to each other in the first round.

Each participant P; begins by generating a list of single-use private nonce pairs and
corresponding public commitment shares (((d;;, D;; = g%4), (e, Eij = g9))) i1
where j is a counter that identifies the next nonce/commitment share pair available to
use for signing. Each P; then publishes (i, L;), where L; is their list of commitment

13

shares L; = ((Dj, Eij))7—;. The location where participants publish these values
can depend on the implementation (which we discuss further in Section 7). The set of
(4, L;) tuples are then stored by any entity that might perform the signature aggregator
role during signing.

Signing Protocol. At the beginning of the signing protocol in Figure 3, S.A selects
a : t < a < n participants (possibly including itself) to participate in the signing.
Let S be the set of those « participants. S.A then selects the next available commit-
ment (D;, E;) : i € S, which are later used to generate a secret share to a random
commitment R for the signing group.’

The resulting secret nonce is k = Zie g ki, where each k; = d; + e; - p; (We next
describe how participants calculate p;), and (d;, e;) correspond to the (D; = g%, E; =
g¢*) values published during the Preprocess stage. Recall from Section 2.1 that if the
k; are additive shares of k, then the ’;\— are Shamir shares of k, such that each)\; is the

Lagrange coefficient for the i participant over the set S.

After these steps, SA then creates the set B, where B is the ordered list of tuples
((¢, Dy, E;))ies. SA then sends (m, B) to every P;,i € S.

After receiving (m, B) from S.A to initialize a signing operation, each participant
checks that m is a message they are willing to sign. Then, using m and B, all partici-
pants derive the “binding values” p;,¢ € S such that p;, = Hy(i,m, B), where H; is a
hash function whose outputs are in Zj.

Each participant then computes the commitment R; for each participant in S by
deriving R; = D; - (E;)". Doing so binds the message, the set of signing participants,
and each participant’s commitment to each signature share. This binding technique
thwarts the attack of Drijvers et al. described in Section 2.5 as attackers cannot combine
signature shares across disjoint signing operations or permute the set of signers or
published commitments for each signer.

The commitment for the set of signers is then simply R = [, ¢ R;i. As in single-
party Schnorr signatures, each participant computes the challenge ¢ = Hy(R,Y, m).

Each participant’s response z; to the challenge can be computed using the single-
use nonces (d;, e;) and the long-term secret shares s;, converted to additive form:

zi =di+(e; - pi) + Xi-si-c

S A finally checks the consistency of each participant’s reported z; with their com-
mitment share (D;, E;) and their public key share Y;. If every participant issued a
correct z;, the group’s response is z = > . _¢ 2;, and the group signature on m is
o = (R, z). This signature is verifiable to anyone performing a standard Schnorr veri-
fication operation with Y as the public key (Section 2.4).

Handling Ephemeral Outstanding Shares. Because each nonce and commitment
share generated during the preprocessing stage described in Figure 2 must be used
at most once, participants should delete these values after using them in a signing
operation, as indicated in Step 5 in Figure 3. An accidentally reused (d;;, e;;) can lead
to exposure of the participant’s long-term secret s;.

SEach participant contributes to the group commitment R, which corresponds to the commitment g* to
the nonce k in step 1 of the single-party Schnorr signature scheme in Section 2.4.

14

Sign(m) — (m, o)
Let SA denote the signature aggregator (who themselves can be one of the
signing participants). Let S be the set of a : ¢ < v < n participants selected for
this signing operation, and Y be the group public key. Let B = ((i, D;, E;))ics
denote the ordered list of participant indices corresponding to each participant P;,
s; be P;’s secret key share, and L; be the set of commitment values for P; that
were published during the Preprocess stage. Each identifier ¢ is coupled with the
commitments (D;, F;) published by P; that will be used for this signing
operation. Let Hy, Hy be hash functions whose outputs are in Z;.

1. S A begins by fetching the next available commitment for each participant
P; € S from L; and constructs B.

2. Foreachi € S, SA sends P; the tuple (m, B).

3. After receiving (m, B), each P; first validates the message m, and then checks
Dy, E, € G* for each commitment in B, aborting if either check fails.

4. Each P; then computes the set of binding values py = H1(¢,m, B),£ € S.
Each P; then derives the group commitment R = [], g D¢ - (£,)?*, and
the challenge ¢ = Ha(R,Y,m).

5. Each P; computes their response using their long-lived secret share s; by
computing z; = d; + (e; - p;) + \; - 54 - ¢, using S to determine the 7™
Lagrange coefficient \;.

6. Each P; securely deletes ((d;, D;), (e;, F;)) from their local storage, and then
returns z; to SA.

7. The signature aggregator S.A performs the following steps:

7.a Derive p; = Hq(i,m,B) and R; = D;; - (E;;)" fori € S, and
subsequently R = [],.g R; and ¢ = H(R,Y, m).

7.b Verify the validity of each response by checking g* < R; - Y;“N for
each signing share z;, i € S. If the equality does not hold, identify

and report the misbehaving participant, and then abort. Otherwise,
continue.

7.c Compute the group’s response z = Y _ z;
7.d Publish 0 = (R, z) along with m.

Figure 3: FROST Single-Round Signing Protocol

15

However, if S.A chooses to re-use a commitment set (D;, E;) during the signing
protocol, doing so simply results in the participant P; aborting the protocol, and con-
sequently does not increase the power of S.A.

6 Security

We now present proofs of correctness and a high-level overview of our proof of security
against chosen-message attacks for FROST. We present our complete proofs of security
in Appendix A.

6.1 Correctness

Signatures in FROST are constructed from two polynomials; the first polynomial F (x)
defines the secret sharing of the private signing key s (such that Y = ¢®) and the
second polynomial Fy(x) defines the secret sharing of the nonce k such that k =
> ics dite;i-p; using the associated public data (m, B) to determine p;. During the key
generation phase described in Figure 1, the first polynomial F;(x) = Z;‘L=1 fi(z) is
generated such that the secret key shares are s; = F (¢) and the secret key is s = F} (0).

During the signature phase (Figure 3), each of the o : ¢ < a < n participants
selected for signing use a pair of nonces (d;, e;) to define a degree « — 1 polynomial

F5(z), interpolating the values (3, M), such that F3(0) = 3, di+e;-p;.

Then let Fi(z) = Fy(z) + ¢ - Fy(x), where ¢ = Hy(R,Y, m). Now z; equals
d; + (61' . pi) +X-si-c=)\i(Fg(i) +c- Fl(l)) =)\Z'Fg(i), SO z = EieS z; 18
simply the Lagrange interpolation of F3(0) = (3 ,cgdi + €5 - pi) + ¢ - 5. Because

R = gxiesditeiri and ¢ = Ho(R,Y,m), (R, z) is a correct Schnorr signature on 7.

6.2 Security Against Chosen Message Attacks

We now present a high-level overview of the proof of security against chosen-message
attacks for FROST; our complete proofs are in Appendix A. We begin by summarizing
a proof of security for an interactive variant of FROST that we call FROST-Interactive,
and then demonstrate how the proof extends to plain FROST.

We employ the generalized forking strategy used by Bellare and Neven [3] to cre-
ate a reduction to the security of the discrete logarithm problem (DLP) in G. We prove
security against the standard notion of existential unforgeability against chosen mes-
sage attacks (EUF-CMA) by demonstrating that the difficulty to an adversary to forge
FROST signatures by performing an adaptively chosen message attack in the random
oracle model reduces to the difficulty of computing the discrete logarithm of an arbi-
trary challenge value w in the underlying group, so long as the adversary controls fewer
than the threshold ¢ participants.

FROST-Interactive. In FROST-Interactive, p; is established using a “one-time”
verifiable random function (VRF),® as p; = a;; + (b;; - H,(m, B)), where (a;j, bi;)
are selected and committed to as (A4;; = g%, B;; = g%4) during the preprocessing

SA one-time VRF F}, for key k relaxes the standard properties of a VRF by requiring that Fy, () be
unpredictable to someone who does not know & only when at most one value of F} (y) has been published

16

stage, along with zero-knowledge proofs of knowledge of (a;j;,b;;). To perform a
signing operation, participants first generate p; in the first round of the signing protocol
using (a;;, b;;), and then publish p; to the signature aggregator, which distributes all
pe, £ € S to all signing participants. These p;, ¢ € S values are then used by all
signing participants to compute R in the second round of the signing protocol, which
participants use to calculate and publish z;.

Summary of proof for EUF-CMA security for FROST-Interactive. Let n;, be
the number of queries made to the random oracle, n,, be the number of allowed pre-
process queries, and ng be the number of allowed signing queries. We assume there
exists a forger F that (7, ny, np, ns, €)-breaks FROST-Interactive, meaning that 7 can
compute a forgery for a signature generated by FROST-Interactive in time 7 with suc-
cess ¢, but is limited to making n; number of random oracle queries, n, number of
preprocess queries, and 1, number of signing queries. We construct an algorithm C'
that (7/, ¢’)-solves the discrete logarithm problem in G, for an arbitrary challenge value
w € G, using as a subroutine a forger F that can forge FROST signatures.

More specifically, our proof strategy embeds w in the public key Y generated by
FROST; F performs its attack to produce forged signatures under Y by interacting
with a simulator A that simulates the environment and honest participants. F is forked
during its execution, resulting in two forgeries (o = (R, z),0’ = (R, 2’)), which are
used to solve the DLP for w.

Without loss of generality, we assume J controls ¢ — 1 participants.

Theorem 6.1. If the discrete logarithm problem in G is (7', €')-hard, then the FROST-
Interactive signature scheme over G with n signing participants, a threshold of t, and
a preprocess batch size of is (T,np, Ny, N, €)-secure whenever

"< ¢ and
€
T 22np A+ (m+1n, +1

7' =471+ (307n, + (4t — 2)ns + (n 4+t — 1)t + 6) - tegp + O(mny + ns +npy + 1)

such that teq, is the time of an exponentiation in G, assuming the number of partici-
pants compromised by the adversary is less than the threshold t.

Proof Sketch for FROST-Interactive. We provide our complete proof in Appendix A,
but summarize here. We prove Theorem 6.1 by contradiction.

We begin by embedding the challenge value w into the group public key Y. The
coordinator algorithm C' then uses the generalized forking algorithm G F 4 to initialize
the simulator A(Y, {h1,...,hn, }; B), providing the group public key Y, outputs for

n, = 2ny, + (7 + 1)n, + 1 random oracle queries denoted as {h1,...,h,, } &m,
and the random tape 8. A then invokes the forger F, simulating the responses to
JF’s random oracle queries by providing values selected from {hy, ..., h,, }, and also

simulates the honest party P, in the KeyGen, Preprocess, and Sign procedures.
To simulate signing without knowing the secret key corresponding to P;’s own pub-
lic key Y;, A generates the commitment and signature for participant P; by publishing

by the keyholder (and y # z). We use the construction k = (a, b) € Zg and Fy(z) = a+b- z. The public
keyis (A = g%, B = g°).

17

(Dyj = g* - (Yy)~%, Ey;) such that 2y & Zg, c; is the next unused value from the set

of random oracle outputs supplied by GF 4, and Ey; = g, ey & Zy. To determine
which challenge ¢; to return for a particular commitment (D;;, E;;) when simulating a
signing operation, .A forks F to extract its (a;j, b;;) VRF keys from its zero-knowledge
proofs during Preprocess for each participant P, controlled by F, and consequently can
directly compute its corresponding py. Hence, A can compute R strictly before F for
every signing query, and thus can always correctly program the random oracle for the
query Hy(R,Y, m) to return the correct ¢; embedded in D,;.

Once A has returned a valid forgery 0 = (R, z) and the index J associated to the
random oracle query h; such that h; = ¢, GF 4 re-executes 4 with the same random
tape 8 and public key Y, but with responses to random oracle queries

{h1,....;hg_1,h5, ... Ry, }, where {h';,... h; } & Doing so simulates the
“forking” of A at a specific point in its execution, such that all behaviour of A is
identical between executions up to the J™ random oracle query, but different thereafter.

Consequently, given a forger F that with probability € produces a valid forgery, the
probability that A returns a valid forgery for FROST-Interactive is €, and the probability
that G I 4 returns two valid forgeries using the same commitment after forking A is ;—2

The running time for C' to compute the discrete logarithm by procuring two foré—
eries from FROST-Interactive is four times that for F (because of the forking of A,
which itself forks F), plus the time to compute (307n, + (4t —2)ns + (n+t —1)t +6)
exponentiations, and O(7mp + ns + np + 1) other minor operations, such as table
lookups.

Extension of Proof to FROST. We now heuristically demonstrate how the change
from FROST-Interactive to FROST does not open a hole in the proof. The difference
between FROST-Interactive and FROST is the replacement of the interactive VRF in
FROST-Interactive with a hash function (modelled by a random oracle) to derive p;.
This change still achieves the properties required of p;, as deterministic, unpredictable,
and bound to (¢, m, B). However, the key distinction when generating p; via a VRF
versus a hash function is that in FROST-Interactive, the VRF query is part of the signing
algorithm, and so each such query uses up a (d;, e;) pair; therefore, the adversary can
learn only one p;(m, B) value for any given (i, D;, E;) € B, and importantly, this
allows the simulator A in the proof to always be able to set Hy(R, Y, m) to the correct
¢; value. In plain FROST, the adversary can query the random oracle p; = H, (i, m, B)
polynomially many times, even with the same (i, D;, E;) € B. The adversary will be
able to produce a forgery if” (slightly generalizing the Drijvers attack to arbitrary linear
combinations instead of just sums) they can find m*, r*, and (m;, B;, fyj>;-‘:1 such that

Hy(R*,Y,m*) = ;- Hy(R;, Y, m;) (1)
j=1

"This is the main heuristic step; sufficiency (“if”") is immediate, but we do not prove necessity (“only
if””). That said, the only information the forger has about honest participant P;’s private key s; is Yz = g5t
and 7 pairs (g7, 2; = kj + s¢ - M - Ha(R;,Y, mj));.r:l. If the forger can produce a forgery, they must
necessarily be able to compute a pair (gk* ,z* = k* 4 s A¢ - Ho(R*, Y, m™*)). Assuming taking discrete
logs is infeasible, writing z* as a linear combination of the z; (as polynomials in the unknown s¢) appears
to be the forger’s only reasonable strategy.

18

*

where Rj — H D - EHl(i,mj,B])’ E\y — Djt . E;‘th(i,m]‘,Bj)’ R* = gr
(i,D,E)EB;

s
—; . .
H R; ’ each B, contains the honest party’s (¢, Dj;, E;;), and m* is not one of the
j=1
mj.

Importantly, the key difference between FROST and schemes susceptible to the
Drijvers attack is that in FROST, the R* in the left side of Equation 1 is itself a func-
tion of all the inputs to the hash functions on the right side. Drijvers can use Wagner’s
generalized birthday attack [30] because the left and right sides of Equation 1 are in-
dependent for schemes vulnerable to their attack, and so Wagner’s algorithm can find a
collision between a list of possible values on the left (the (m*, R*) terms) and a (larger)
list of possible values on the right (the (1, R;) terms). In FROST, however, each com-
bination of values on the right changes R*, and so the list of possible values on the left
(varying m*, for example) changes for each such combination, increasing the cost to
an attacker from the generalized birthday collision attack to multiple preimage attacks.

As such, we heuristically argue that the difference between generating p; via the
one-time VRF in FROST-Interactive and the random oracle in plain FROST has no
security consequence.

6.3 Aborting on Misbehaviour

FROST requires participants to abort once they have detected misbehaviour, with the
benefit of fewer communication rounds in an honest setting.

If one of the signing participants provides an incorrect signature share, S.A will
detect that and abort the protocol, if SA is itself behaving correctly. The protocol can
then be rerun with the misbehaving party removed. If SA is itself misbehaving, and
even if up to ¢ — 1 participants are corrupted, S.A still cannot produce a valid signature
on a message not approved by at least one honest participant.

7 Implementation and Operational Considerations

We have implemented FROST in Rust, using Ristretto over curve25519 [19] for the
group operations. Our source code can be found at https://crysp.uwaterloo.ca/software/
frost.

We now discuss two topics that may be of interest to implementors.

Publishing Commitments. The preprocessing step for FROST in Section 5.2 re-
quires some agreed-upon location for participants to publish their commitments to,
such as a commitment server, which is trusted to provide the correct (i.e., valid and
unused) commitment shares upon request. If malicious, it could perform a denial-of-
service attack, or it could provide stale or malformed commitment values on behalf of
honest participants. However, simply having access to the set of a participant’s public
published commitments does not grant any additional powers.

Performing two-round FROST without central roles. While the round complex-
ity of FROST can be optimized using central roles such as the signature aggregator,
some implementations may wish to remain completely decentralized. In this setting,

19

participants can simply broadcast commitments to each other, and perform signing us-
ing a two-round setting (foregoing the preprocessing step) for further simplicity.

8 Conclusion

While threshold signatures provide a unique cryptographic functionality that is appli-
cable across a range of settings, implementations incur network overhead costs when
performing signing operations under heavy load. As such, minimizing the number
of network rounds required for threshold signing operations has practical benefits for
network-limited devices or where signers can go offline but wish to perform a signing
operation asynchronously. In this work, we introduce FROST, a flexible Schnorr-based
threshold signature scheme that improves upon the state of the art by minimizing the
number of network rounds required for signing without limiting the parallelism of sign-
ing operations. We present an optimized variant of FROST as a single-round signing
protocol with a preprocessing phase, but the protocol can be used in a two-round set-
ting. While FROST requires aborting on misbehaviour, such a tradeoft is often practi-
cal in a real-world setting, assuming such cases of misbehaviour are rare. We present
proofs of security and correctness for FROST, demonstrating FROST is secure against
chosen-message attacks assuming the adversary controls fewer than a threshold num-
ber of participants, and the discrete logarithm problem is hard.

Acknowledgments

We thank the anonymous SAC 2020 reviewers for their feedback, which we have in-
corporated into the current version of the paper. We thank Douglas Stebila for his
discussion on our proof of security and security bounds. We thank Richard Barnes
for his discussion on practical constraints and identifying significant optimizations to
a prior version of FROST, which our final version of FROST builds upon. We thank
Isis Lovecruft for their discussion and parallel implementation of FROST, as well as
suggestions for performance improvements.

We thank colleagues at the Zcash Foundation for discussions on applications of
threshold signatures, and Omer Shlomovits and Elichai Turkel for pointing out the case
of rogue-key attacks in plain Ped-DKG and the suggestion to use a proof of knowledge
for a,o as a prevention mechanism. We acknowledge the helpful description of additive
secret sharing and share conversion as a technique to non-interactively generate secrets
for Shamir secret-sharing schemes by Lueks [20, §2.5.2].

We thank the Royal Bank of Canada and NSERC grant CRDPJ-534381 for funding
this work. This research was undertaken, in part, thanks to funding from the Canada
Research Chairs program.

References

[1] Aysajan Abidin, Abdelrahaman Aly, and Mustafa A. Mustafa. Collaborative Au-
thentication Using Threshold Cryptography. In Emerging Technologies for Au-

20

thorization and Authentication, pages 122—137, 2020.

[2] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness Re-use in
Multi-recipient Encryption Schemeas. In Public Key Cryptography, pages 85-99,
2003.

[3] Mihir Bellare and Gregory Neven. Multi-Signatures in the Plain Public-Key
Model and a General Forking Lemma. In Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS ’06, pages 390-399,
2006.

[4] Josh Benaloh and Jerry Leichter. Generalized Secret Sharing and Monotone
Functions. In CRYPTO, 1988.

[5] Fabrice Benhamouda, Tancrede Lepoint, Michele Orru, and Mariana Raykova.
On the (in)security of ROS. Technical Report 2020/945, TACR ePrint, 2020.
https://eprint.iacr.org/2020/945.

[6] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact Multi-signatures for
Smaller Blockchains. In ASTACRYPT, pages 435-464, 2018.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. Journal of Cryptology, 17(4):297-319, Sep 2004.

[8] Ronald Cramer, Ivan Damgard, and Yuval Ishai. Share Conversion, Pseudoran-
dom Secret-Sharing and Applications to Secure Computation. In Theory of Cryp-
tography, pages 342-362, 2005.

[9] Ivan Damgard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg
Pagter, and Michael Baksvang @stergard. Fast Threshold ECDSA with Hon-
est Majority. Technical Report 2020/501, IACR ePrint, 2020. https://eprint.iacr.
org/2020/501.

[10] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. On the Security of Two-Round Multi-Signatures.
2019 IEEE Symposium on Security and Privacy (SP), pages 1084-1101, 2019.

[11] Paul Feldman. A Practical Scheme for Non-interactive Verifiable Secret Shar-
ing. In Proceedings of the 28th Annual Symposium on Foundations of Computer
Science, SFCS 87, pages 427-438, 1987.

[12] Rosario Gennaro and Steven Goldfeder. Fast Multiparty Threshold ECDSA with
Fast Trustless Setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1179-1194, 2018.

[13] Rosario Gennaro and Steven Goldfeder. One Round Threshold ECDSA with
Identifiable Abort. Technical Report 2020/540, IACR ePrint, 2020. https://eprint.
iacr.org/2020/540.

21

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
Applications of Pedersen’s Distributed Key Generation Protocol. In Topics in
Cryptology — CT-RSA 2003, pages 373-390, 2003.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology, 20:51-83, 2007.

Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua A.
Kroll, Edward W. Felten, and Arvind Narayanan. Securing Bitcoin wallets via
a new DSA/ECDSA threshold signature scheme. http://stevengoldfeder.com/
papers/threshold _sigs.pdf, 2015. Accessed Dec 2019.

Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm
(EdDSA). https://tools.ietf.org/html/rfc8032, January 2017.

KZen Networks. Multi Party Schnorr Signatures. https://github.com/KZen-
networks/multi-party-schnorr, 2019. Accessed Jan 2020.

Isis Lovecruft and Henry de Valence. The Ristretto Group. https://doc.dalek.rs/
curve25519_dalek/, 2020.

Wouter Lueks. Security and Privacy via Cryptography — Having your cake and
eating it too. https://wouterlueks.nl/assets/docs/thesis_lueks_def.pdf, 2017.

Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Sim-
ple Schnorr multi-signatures with applications to Bitcoin. Designs, Codes and
Cryptography, 87, 2019.

Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Gold-
berg. PIR-Tor: Scalable Anonymous Communication Using Private Information
Retrieval. In 20th USENIX Security Symposium, SEC’11, 2011.

Torben P. Pedersen. A Threshold Cryptosystem without a Trusted Party (Ex-
tended Abstract). In EUROCRYPT ’91, volume 547 of Lecture Notes in Computer
Science, pages 522-526, 1991.

Torben P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing. In CRYPTO, CRYPTO ’91, pages 129-140, 1991.

David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures
and Blind Signatures. J. Cryptol., 13(3):361-396, January 2000.

C. Schnorr. Security of blind discrete log signatures against interactive attacks.
In ICICS, 2001.

Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO, 1989.

Adi Shamir. How to share a secret. Communications of the ACM, 22:612-613,
1979.

22

[29] Douglas R. Stinson and Reto Strobl. Provably Secure Distributed Schnorr Sig-
natures and a (¢, n) Threshold Scheme for Implicit Certificates. In Proceedings
of the 6th Australasian Conference on Information Security and Privacy, ACISP
"01, pages 417434, 2001.

[30] David Wagner. A Generalized Birthday Problem. In CRYPTO, 2002.

23

A Proof of Security

In Section 6.2, we presented a high-level overview of the proof of security for FROST-
Interactive. We now present the proof in detail.

A.1 Preliminaries

Our proof strategy is to demonstrate that the security of FROST-Interactive reduces
to the difficulty of computing the discrete logarithm of an arbitrary challenge value
w. At a high level, w will be embedded into a public key Y representing a set of
participants, such that Y is the output of these participants cooperating to perform the
FROST KeyGen protocol. Then, to compute the discrete logarithm of w, a forger F will
produce two forgeries (o, 0’), 0 # ¢’ for the same commitment value R and message
m. Using (o, 0’), the discrete logarithm of w can subsequently be extracted.

We will now describe how we perform this proof strategy in detail. To begin, we
introduce the different components required to execute this strategy. Our proof relies
on four different algorithms, each with different roles and responsibilities. We describe
these at a high level below, and expand on each in the following sections.

- F represents a forger that with probability € and in time ¢ can compute a forgery

o for a public key Y, where Y was generated as part of the FROST KeyGen
protocol.

- Arepresents a simulator that invokes F and simulates the necessary inputs/outputs
for F to perform its forgery attack. Specifically, A simulates honest participants
in FROST KeyGen and signing operations, as well as random oracle queries.

- GF4 represents the Generalized Forking Algorithm that establishes a random
tape and outputs to random oracle queries, and invokes 4 with these values in
order to produce two forgeries (o, 0’).

- C represents the coordination algorithm that accepts a challenge value w and
invokes the other algorithms in order to obtain (o, c’), which it then uses to
compute the discrete logarithm of w.

Adversary Powers. When performing its forgery attack, we grant F the role of
the signature aggregator S.A. Without loss of generality, we assume F controls ¢ — 1
participants, and has full power over how these participants behave, what secret and
public values they generate, etc. We also assume the participant P, is in the signing set
S.

We now describe in greater detail GF 4 and C, as these algorithms remain largely
unchanged from their use by Bellare and Neven [3]. We describe the implementation
of A in the proof directly.

A.1.1 Generalized Forking Algorithm and Lemma

We build upon the Generalized Forking Algorithm and Lemma by Bellare and Neven [3],
for both its simplicity and to ensure that our proof can support concurrent executions
of the signing protocol. In the Generalized Forking Algorithm, the rewinding of the
adversary A is simulated by invoking A in succession. In each invocation of A, the
same random tape [is supplied, as well as the same public key Y. However, each

24

Algorithm 1 Generalized Forking Algorithm GF4(Y)
Input A public key Y
Output (1, h;, 1/}, 0,0") if A produces two forgeries, otherwise L

1: Instantiate a random tape /3

{(hi,. o ha y &0

(‘]7 U) or L < A(Y7 {hla BERE) hnr}7 5)

If L, then return L

Wy, & H

(J'0") «— A(Y, {h1, ..., hg—1, 0y 0, 15 B)

If J < J and hy # R/; then return (1, by, h';,0,0"). Else, return L

A S

execution of 4 receives different outputs for a subset of random oracle queries. This
approach is akin to the proof technique by Pointcheval and Stern [25] for plain Schnorr,
which requires running the adversary until a forgery is produced, and then “rewinding”
the adversary back to a specific point in execution. However, the Generalized Forking
Algorithm does not require rewinding, but instead re-executes A with fresh random-
ness after a specific random oracle query h ; to simulate the forking of 4. As a result,
each execution of A is identical before the random oracle query that receives h s, but
diverges afterward.

We next describe the Generalized Forking Algorithm and corresponding General-
ized Forking Lemma in greater detail.

Generalized Forking Algorithm. Let n, be the maximum number of random
oracle outputs that .4 may need to generate, and let h be the number of possible outputs
from the random oracle H.

The adversary A is an algorithm that accepts as inputs a public key Y, the randomly
selected set A1, ..., hy,, of random oracle outputs, and a random tape /3. A outputs an
integer .JJ which represents the index corresponding to the random oracle query that can
be used to derive c for the forgery o = (R, z), along with o itself. GF 4 (Algorithm 1)
plays the role of setting up these inputs and outputs, and executing A accordingly.

The execution GF 4 is as follows: first GF 4 instantiates a random tape (3, and
generates random outputs hq, ..., h,, which will then be used by A to simulate the
outputs for each random oracle query. GF4 then executes A with these inputs as
well as a public key Y. A uses the forger F as a subroutine to perform its forgery
attack, simulating all input and output whenever F requests a signing operation or
random oracle query. Eventually, F outputs a forgery o with probability €, which A
returns along with its corresponding index for the random oracle query that can be
used to derive ¢ for o. After A outputs (J, o), GF 4 first checks to see if the output
is a successful forgery, as indicated by when J > 1. If so, it continues to the second
execution of A.

For the second execution of A, GF4 will feed in the same random tape /3, but
will supply a different set of simulated responses for the random oracle H. In order to
“fork” A, GF 4 will supply the same responses A1, . .., hy_1, but will provide different

25

Algorithm 2 Algorithm C(w)

Input A challenge value w
Output The discrete logarithm of w, or L

1: Simulate KeyGen to embed challenge value w and extract the forger’s secret values
(Y, (a0, - .., ag-1)0)) < SimKeyGen(w)

2 (1,hy,h},0,0") or L < GF4(Y)

3: If not L, then ExtractDLog(w, by, h'y, 0,0, (a0, - - -, a@—1y0))

responses for hy,..., Ay, . In doing so, GF 4 simulates forking the adversary at a
specific point when performing its attack similar to the proof model by Pointcheval
and Stern [25], but without needing to rewind A to a specific point.

After its second execution, A will return (J',¢’) or L. If J’ < J but the output
from the random oracle queries is different such that h; # h’;, then GF 4 will output
1 to indicate success along with the two forgeries o, o’ and the two random oracle
queries corresponding to these forgeries (hy, h’;). These values can then be used by
the coordination algorithm C' to determine the discrete logarithm of the challenge value
w (we provide more details on how to perform this operation below).

Generalized Forking Lemma. We will now see how the generalized forking
lemma presented by Bellare and Neven [3] determines the probability that GF 4 will
return a successful output. Let acc be the accepting probability of A, or the probability
that J > 1, and let i be the total number of possible outputs of H. Let ¢’ be the ad-
vantage of solving the discrete logarithm problem over some group G. Recall that n,
is the maximum number of random oracle outputs .4 may need to generate.

Lemma A.l1. Generalized Forking Lemma [3] Let frk be defined by the following
probability:
frk=Prib=1:2 & IG: (bo,0") & GF(x)]
where IG is an input generator for a challenge input x. Then
1

S acc 1
e’ > frk > acc (ﬂr h)

Lemma A.1 demonstrates the probability ¢’ that running the generalized forking
algorithm GF 4 will produce two valid forgeries o = (R, z) and 0’ = (R’, 2’) along
with their respective challenge responses from the random oracle (h;,h’;) over the
same message m and public commitment R, and so enable the extraction of the desired
discrete logarithm.

A.1.2 Embedding the challenge value during KeyGen

We use a coordination algorithm C' described in Algorithm 2 to perform setup for GF 4
and to derive the discrete logarithm of the challenge value w afterward.

Simulating KeyGen. We now describe how C' embeds the challenge value w into
the group public key Y during a simulation of the KeyGen phase; Y is in turn fed as

26

input into G F 4. For simplicity of notation, we let n = ¢ (where n is the total number of
participants and ¢ is the threshold), and F controls ¢ — 1 participants, and .4 simulates
the ¢ (honest) participant to F. The case for general n is similar.

For the first round of the key generation protocol, A simulates P; as follows. Let
C; be the set of public commitments ¢;1, . . ., ¢;;—1) for participant F;. To calculate

C and to distribute shares f;(1), ..., fi(t — 1) to the t — 1 participants corrupted by
F, A does the following:

1. Randomly generate Ty, . .., Zy;—1) to serve as the secret shares corresponding

to fe(1),..., filt = 1)
2. Set ¢ to be the challenge value w

3. Calculate ¢y1, ..., ¢y ¢—1) by performing Lagrange interpolation in the expo-
nent, or gy, = wko -+ g2io1 AkiFu

A then broadcasts Cy for P;. For the second round, A sends (1,Z), ..., (t —
1, Z4(;—1)) to the participants Py, ..., P;_; corrupted by F. Further, A simulates the
proof of knowledge for a;y by deriving o as:

Cy 2 ﬁZq;R:gz cw % and o = (R, 2)

A derives the public key for P, by following the same steps they would use to
calculate the public key for their peers (as the discrete log of the challenge value w is

unknown), by performing:
n t—1

Y—t: HH¢;2modq

j=1k=0

The participants controlled by F can derive their private key shares s; by directly
following the KeyGen protocol, then deriving Y; = g°*. We will see in the proof for
FROST-Interactive how A can still simulate signing for the honest party P; to F even
without knowing its corresponding private key share. Each party (honest or corrupted
by F) can follow the KeyGen protocol to derive the group’s long-lived public key, by
calculating Y = []}_, ¢jo.

In addition, C' must obtain s secret values (a1, . .., a—1)0) using the extractor
for the zero-knowledge proofs that F generates. C' will use these values next in order
to convert the discrete logarithm for the group public key Y into the discrete logarithm
for the challenge value w.

A.1.3 Solving Discrete Logarithm of the Challenge

We now describe how two forged signatures (o, 0’) along with the challenge values
from the random oracle query (h s, h';) produced as output from GF 4 can be used by
C to extract the discrete logarithm of the challenge value w. We give an overview of
the algorithm ExtractDLog in Algorithm 3, which C' uses as a subroutine. Note that
the advantage e’ used later in our proofs denotes the advantage of C'(w) of solving the
discrete logarithm for the challenge value w.

27

Algorithm 3 Algorithm ExtractDLog(w, by, b/}, (0,0"), (a10, ..., a@—1)0))

Input A challenge value w, two random oracle responses h y, h’; and their corre-
sponding two forgeries (o, 0”), and secret values (a1, - - -, @—1)0)
Output The discrete logarithm of w

1: Parse 0,0’ as (R, z), (R, 7'), and then compute the discrete logarithm of Y as
(2 ==)
(hy—hy)"

2: Compute ag = dlog(Y') — Zf: a;o

3: Return ayg, which is the discrete logarithm of w

We can compute dlog(Y"), because
R=¢*- Y M = gZ' LY R

and since hy # h'}, then
(z' —2)
(h; —hy)

The discrete logarithm corresponding to w can then be extracted as follows:

dlog(Y) =

t—1
ayo = dlog(Y) — Z aip = dlog(w) 2
i=1

As discussed in the overview of how .4 simulated the key generation with w em-
bedded as the challenge value in Section A.1.2, all of F’s a;9,¢ # t values are known
as these were extracted by .A while performing the key generation protocol. Hence, C
can extract ay using Equation 2, resulting in learning the discrete log of the challenge
value w.

A.2 Proof of Security for FROST-Interactive

Due to the difficulty of simulating zero-knowledge proofs in parallel, for the purposes
of proving the security of FROST, we will first prove security against an inferactive
two-round variant of the FROST signing operation, which we call FROST-Interactive.
In Section 6.2, we discuss how the security for FROST-Interactive extends to plain
FROST.

A.2.1 FROST-Interactive

FROST-Interactive uses the same KeyGen protocol to generate long-lived keys as reg-
ular FROST, as further described in in Section 5.1. We present an overview of the
Preprocess step for FROST-Interactive in Figure 4, and the signing step in Figure 5.
The distinction between the signing operations for plain FROST and FROST-Inter-
active is how the binding value p; is generated. Because of the difficulty of simulat-
ing non-interactive zero-knowledge proofs of knowledge (NIZKPKSs) in a concurrent

28

setting, we instantiate FROST-Interactive using a one-time VRF, from which each par-
ticipant generates their value p; given the inputs (m, B). We prove this variant to be
secure against the standard notion of EUF-CMA security.

Preprocess. The Preprocess phase for FROST-Interactive differs from FROST in
two ways. First, participants additionally generate one-time VRF keys (a;;, b;;) and
their commitments (A;; = g%, B;; = ¢”4) along with the usual FROST nonce val-
ues (d;j, e;;) and their commitments (D;; = g%, E;; = g¢%i) along with a zero-
knowledge proof of knowledge for the (a;;,b;;) one-time VRF keys. These keys are
later used to generate p; during the signing phase.

We require Preprocess for FROST-Interactive to be performed serially so that the
simulator can efficiently extract the discrete logarithm of the adversary’s non-interactive
zero knowledge proof of knowledge of its VRF keys via rewinding. In the setting of
plain FROST, the Preprocess step can be performed non-interactively, and thus the
requirement of performing this step serially is no longer relevant.

Sign. To perform signing, S.A first sends (m, B) to each participant, and each
participant responds with p; = a;; + b;; - H,(m, B), where B is derived similarly to
in plain FROST via the ordered list of tuples (4, D;;, F;;),4 € S. In the second round,
SA then sends each p; to each of the signing participants, who use these values to
derive R and then to calculate their own response z;.

A.2.2 Proof of Security for FROST-Interactive

We now present a proof of EUF-CMA security for FROST-Interactive, demonstrating
that an adversary that can compute forgeries acting against FROST-Interactive can be
used to compute the discrete logarithm of an arbitrary challenge value.

Let nj, be the number of queries made to the random oracle, n, be the number of
allowed preprocess queries, and ns be the number of allowed signing queries.

Theorem A.2. If the discrete logarithm problem in G is (7', €')-hard, then the FROST-
Interactive signature scheme over G with n signing participants, a threshold of t, and
a preprocess batch size of m is (T, np, Ny, Ns, €)-secure whenever

2
€<
2np + (m+ Dn, + 1

and
7' =471+ (30mn, + (4t — 2)ns + (n+t — 1)t 4+ 6) - tegp + O(mny + ns + npp + 1)

such that teq, is the time of an exponentiation in G, assuming the number of partici-
pants compromised by the adversary is less than the threshold t.

Proof. We prove the theorem by contradiction. Assume that F can (7, 1y, ny, nis, €)-
break the unforgeability property of FROST-Interactive. We will demonstrate that an
algorithm C that can (77, ¢’)-solve the discrete logarithm of an arbitrary challenge value
w € G. We first describe the simulator .4, which uses F as a black-box forger.

We now describe how A simulates FROST-Interactive to F in Algorithm 4. Recall
that F controls ¢t — 1 participants, and .4 simulates a single honest participant P;.

29

Preprocess(ﬂ') — (Z, <(Dij7 Eij7 Aij; Bij)>;-r:1)
Each participant P, € {1,...,n} performs this stage prior to signing. As
before, j is a counter for a nonce/commitment pair, and 7 the number of
commitments generated. Let H3 be a hash function whose input is a sequence of
commitment values, and H, be one with inputs (i, D).

Round 1

1. Create empty list L;. Then, for 1 < j < 7, perform the following:
l.a Generate nonces d;;, €5, ai;, bi; & Zy, and derive
(Dij, Eij, Aij, Bij) = (9%, g%, g%, g"9).
1.b Generate nonces kq;j, kpi; <i Zg4, and commitments
(Raij, Ruij) = (gheis, gkvir).
1.c Let Kij = (Dij, Eij, Aij, Bij, Raij7 Rbij)-
1.d Append (]7 (Diju Eija Aija Bzg)) to Li’ store ((dij7 Dij)7 (eij, Eij)7
(aij, Aij), (bij, Bij)) for later use in signing operations.
2. Let K; = H3(K;1, ..., Kiz); send (7, K;) to all other participants.
Round 2

1. After receiving (¢, Ky) from all other participants, generate a zero-knowledge
proof of knowledge o; for (a;j, b;;)7_, by performing:

l.a Compute ® = H3(K7,...,K,) and ¢; = Hy(i, D).

1.b Derive Haij = kaij + Qg5+ G4 and Hbij = kbij + bij - Ci,
Vie{l,...,m}.

Le SetJ; = (aij, fbij)T—1-
2. Send (i, L;, J;) to all other participants.

3. After receiving (¢, Ly, Jy) from each participant, verify the proofs in J; using
Ly. First, compute ¢, = Hy(¢, ®). Then, foreach j € {1,...,7}:
3.a Check that ng, Egj, Agj, Bej e G*.
3.b Derive R;,; = g#et - (Agj) ™% and Ry, = ghvts - (Bej) =
3.c Let Ké] = (D@j,E@j,Agj,sz,R/ gfj)'

alj’
4 Let K} = Hy(K},,...,K}). Check K} = K, aborting on failure.

5. Abort if any check failed. Otherwise, store (¢, Ly) for use in signing
operations.

Figure 4: FROST-Interactive Two-Round Preprocessing Protocol

30

Sign(m) — (m, o)
Round 1

1. SA selects a set S of ¢ participants for the signing protocol, and the next

available commitments for each signing participant (D;;, E;;, Ai;, Bij),
and creates B = ((i, D;;, E;j))ics. SA then sends (m, B) to each
participant P;,i € S.

2. After receiving (m, B), each P;,i € S first checks that m is a valid message,
and validates every tuple (i, D;;, E;;) € B maps to the next available
(Dij, Eij, Aij, Bij), aborting if either check fails.

3. Each P; generates p; = a;; + b;; - H,(m, B), securely deletes (a;;, A;;) and
(bij, Bi;) from their local storage, and returns p; to S.A.

Round 2

1. After receiving each p;, S.A then distributes all py, £ € S to each signing
participant.

2. After receiving the list of p, values, each participant checks the validity of
each by verifying (g* 2 Ay .ngHp(m,B)).

3. Each P; then derives R = [[,.g De; - E¢;”, and then ¢ = Ho(R,Y, m).

4. Each P; computes their response using their long-lived secret share s; by
computing z; = d;; + (e;; - pi) + Ai - 8; - ¢, using S to determine \,.

5. Each P, securely deletes (d;;, D;;) and (e;;, E;;) from their local storage, and
then returns z; to SA.

6. SA performs the identical verification, aggregation, and publication of
signature shares as in plain FROST.

Figure 5: FROST-Interactive Two-Round Signing Protocol

31

Algorithm 4 Algorithm A(Y, {h1,...,hn, }; 5)

AN S e

Input A public key Y and random oracle outputs {h1, ..., hn,.}
Output An index J and forgery o, or L

Initialize ctr = 1,7, = {},\To = {}, T3 ={},Tu ={}, 2. ={},C={}, M = {}
Run F on input Y, answering its queries as follows, until it outputs (m, o = (R, z)) or L.
On simulating H,(m, B):

IfT,[m, B] = L, set Tp[m, B] = hetr; ctr = ctr + 1. Return T, [m, B].
On simulating H> (R, Y, m):

If To[m, R] = L, set T2[R,Y,m] = heer, J2[R, Y, m] = ctr;ctr = ctr + 1. Return
1> [R, K m]

—

7: On simulating H3(X):

20:
21:

22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

If T5[X] = L, set T5[X] = hetr; ctr = ctr + 1. Return T5[X].
On simulating Hy (i, ®):
If Tu[i, @] = L, set Ty[i, ®] = heer; ctr = ctr 4+ 1. Return Ty[i, D).

: On simulating Preprocess:

Round 1:
For1l < j <, do:
Set ¢; = hetr, C[j] = ctr, ctr = ctr + 1, zij & Zg» Dyj = g7t - Y, 7%,
Follow the protocol honestly to sample (es;, atj, bs;) and derive (Eyj, A¢j, Btj).
Follow the protocol honestly to sample (kqt;, kot;) and derive (Ratj, Rotj)-
Derive K honestly, publish to F, and wait for all K, values from F.
Round 2:
Derive Ly, ®, J; honestly. Send (¢, L¢, Ji) to F, and wait to receive the (¢, L¢, J¢) tuples
from F, following the protocol for validation.
Reprogram T3[K1, . .., K] = hetr; set ctr = ctr + 1. Rederive c¢; and J; honestly.
Rewind F to step 1 in Round 2 of Figure 4, immediately before F queries H3 with
(Ki,...,Kp).
After allowing F to proceed after rewinding, use its two sets of outputs to derive the
discrete logarithm of each A,; and By;; store for use in the signing protocol.
Complete the protocol honestly.
On simulating Sign:
Round 1: Input (m, B)
Insert m into M.
Using (aej, be;) obtained during Preprocess, derive pe : £ € S, £ # t
Derive p; = a¢j + btj - H,(m, B) and R, following the protocol honestly for validation.
Program T5[m, R] = ¢;, Jo[m, R] = Cj]; return py.
Round 2: Input (pj, ..., p:)
Let z; = Zi; + (e4j - pt); return z¢ to F
If F outputs L, then return L. Else F outputs (m,o = (R, z)).
If To[m, Y, R] = L, set To[m, Y, R| = hctr, J2[m, Y, R] = ctr, and ctr = ctr + 1.
Letc=Ts[m,Y,R]. If R # ¢°Y ~° orm € M, then return L
Let J = J2[m, Y, R]. Return J, 0 = (R, 2)

Let n, = 2n;, + (7 + 1)n, + 1 denote the maximum number of random oracle

outputs .4 may require.

After performing the key generation phase as described in Section A.1.2, A invokes

32

F to perform its forgery attack. A simulates both the responses to the random oracle
queries of F as well as the role of P; in the Preprocess and Sign algorithms.

Simulating Random Oracle Queries. For each random oracle query to H,, Ho,
Hj, and H,, A responds by first checking a corresponding associative table (initialized
to empty on start) to see if the output has already been determined for that query. If
no such output exists, A sets the output to the next available value from {hq,..., Ay, }
supplied by GF 4 upon start, indicated by ctr. After setting the output, A increments
ctr and returns the freshly assigned output. In lieu of the Hy (i, m, B) hash function
used in FROST (presented in Section 5.2), FROST-Interactive uses an interactive one-
time VRF with input H,(m, B) to provide this binding mechanism.

Simulating Preprocess. To perform the Preprocess stage, A simulates the honest
participant P;, following the protocol honestly with exception of the following steps.
When generating D;;, A first picks ¢; as the next available k., value, and keeps track

of which one it used by setting C[j] = ctr in a list C. A randomly selects Z; & Ly,
and then derives Dy; = g - Y;~%.

A honestly computes and publishes its proof of knowledge of the (a;;, b:;) values
in Round 2. However, during this round, A itself forks F in order to extract the discrete
logarithms (a¢;, bej) of the commitment values (A, By;) for all of the players Py
controlled by F. A is able to learn these values by rewinding F to the point before it
makes the query & = H3(K},..., K}), and programming the random oracle to return
a different random output ®’. Then, when F republishes .J; : ¢ # ¢ for all dishonest
parties that F controls, A can solve for the discrete log for each commitment.

Simulating Signing. 7 initiates the FROST-Interactive signing protocol in the role
of SA, sending (m, B) in Round 1. Upon receiving these values, A is able to com-
pute not only its p;, but also all of the other py values for all of the other participants,
because of its knowledge of the (ay;, be;) that A obtained during Round 2 of the pre-
processing stage. Using these p, values, it can compute the R that will be used in
Round 2, and program Hs(R,Y,m) = ¢;. It also saves C[j], the ctr value such that
Ck = hetr, as Jo[R, Y, m] in a table Js.

Note that A is never required to guess which output from the random oracle to
program to correctly issue a signature, because A can always compute R before F can,
and consequently can program the random oracle Ho(R,Y, m) with perfect success.
Conversely, a signing request by A in the simulation for plain Schnorr succeeds only
with probability 1/(ny, + ns + 1) [3].

Finding the Discrete Logarithm of the Challenge Input. As described in Sec-
tion A.1.3, using the two forgeries (o, '), the discrete logarithm of w can be derived.

Recall that the probability of F succeeding for one run of A is simply ¢, as A can
return the correct challenge for each signing query. Then, using the forking lemma, the
probability that the discrete logarithm of w can be extracted after A is run twice is at
least ;—i (ignoring the negligible 1 term, as h—the number of possible hash outputs—
is typically at least 225%), and the total time required to extract the discrete logarithm
of the challenge value is:

' =471+ (30mn, + (4t — 2)ns + (n+t — 1)t + 6) - tegp + O(mny + ns +npy + 1)

The running time for C' to compute the discrete logarithm by procuring two forg-

33

eries from FROST-Interactive is four times that for F (because of the forking of A,
which itself forks F), plus the time to compute (307n, + (4t —2)ns+ (n+t—1)t+6)
exponentiations:
e In simulating KeyGen, (¢ — 1) - ¢ to compute Ch, 2 t0 compute I, and n - ¢ to
compute Y;
o In each of two executions of .A:
7 in each of 7 iterations of Round 1 of simulating Preprocess,
8 to validate each of two versions of t —1 Jy lists in Round 2 of simulating
Preprocess,
— t — 1 to validate the p, and ¢ to compute R in each simulation of Sign,
— 2 to compute R to verify the output of F
and O(mn,, + ns + ny, + 1) other minor operations, such as table lookups.

A.3 Extension of FROST-Interactive to FROST

In this section, we describe the changes we make to FROST-Interactive to remove one
round of communication in each of the Preprocess and the Sign phases. We argue in
Section 6 why our changes do not harm the security of the protocol.

Removal of one-time verifiable random functions to generate p;. The primary
difference between FROST-Interactive and FROST is that in the former, interactive
one-time VRFs are used to generate the p; binding values. In FROST, on the other
hand, these values are generated with random oracles (modelling hash functions). Re-
moving the one-time VRFs removes the VRF keys (a;;, b;;) and their commitments
(Ajj, Bij) from the protocol.

Removal of one round of the Sign phase. With the one-time VRFs removed, all
participants can compute every other participants’ p; values non-interactively, and so
the first round of the Sign protocol for FROST-Interactive (where participants exchange
their p; values) is no longer necessary for FROST.

Removal of the proofs of knowledge of the one-time VRF keys and one round
of the Preprocess phase. As the one-time VRF keys are removed, so are their proofs
of knowledge J; in the Preprocess phase. Removing the J; then makes the K; unused,
and removing the K; removes the first round of the Preprocess phase.

B Changelog

2020-01-06 Initial extended abstract posted and presented at RWC 2020.

2020-01-20 Initial complete technical report, added analysis for Drijvers’ attack and
mechanisms for participants to commit to their commitment values in a pre-
processing stage.

2020-07-08 We added the following improvements:

1. The requirement that each participant provide a zero-knowledge proof of
knowledge of their secret a;y during the key generation stage in order to
prevent against rogue key attacks in the case that ¢ > n/2.

34

2. Change to present only a single variant of FROST that is safe in an concur-
rent setting against known attacks such as the Drijvers attack.

3. New proofs for FROST in a two-round signing setting, and a discussion
how this proof of security extends to FROST in a single-round signing
setting.

2020-07-18 We added the clarification that the Preprocess step for FROST-Interactive
must be performed sequentially, but the Preprocess step in plain FROST is par-
allelizable.

2020-12-22 We added feedback received during the SAC 2020 review process, such
as increased review of prior work, and changed the signature format for compat-
ibility with EdDSA-style signatures. We also added a correction to Equation 1
and clarifications to our proof summary.

35

