

2 C o n t e n t s

A b r i e f h i s t o r y o f D e F i s c a m s a n d h a c k s

P r i n c i p l e s f o r a s s e s s i n g D e F i p r oj e c t s

S m a r t c o n t r a c t a n a ly s i s

 Ownership

 The mint function

 Infinite minting

 New minters

 Token inflation

 The migrate function

 Funds Lockup Period

 The pause function

 Suspicious Functions

 Timelocks

 Token location

 Code verification

 Token Distribution

P r oj e c t a n a ly s i s

 Governance

 Documentation

 Team and development history

 Social media presence

 Mixers for smart contract deployment

 Uniqueness

A u t o m at i n g y o u r D e F i s e c u r i t y a n a ly s i s

3

4

5

5

6

7

7

7

8

9

9

10

10

11

11

12

13

13

14

14

15

16

16

17

C o n t e n t s

3 A b r i e f h i s t o r y o f D e F i s c a m s a n d h a c k s

The Decentralized Finance or DeFi industry was developing slowly
until the middle of 2020, when some significant innovations
occurred and new capital flowed into the industry.

As momentum built, this attracted the attention of millions of
people around the world who then dived into a whole range of
DeFi investment opportunities. Unfortunately, so did a lot of
scammers, who started exploiting smart contract vulnerabilities in
order to drain off this wave of new capital for themselves. This led
to tremendous losses for DeFi users.

In most cases, malicious actors created their own projects,
gathered an audience and lured everyone into thinking their
investments would result in gains of 10x or more. They developed
smart contracts containing functions that acted as backdoors,
allowing them to manipulate terms and steal user funds.

$154 million was lost in 2020 as a result of security vulnerabilities in
smart contracts. This includes losses from malicious projects that
had not been audited by independent third parties and legitimate
projects that were exploited by hackers.

A b r i e f h i s t o r y o f

D e F i s c a m s a n d h a c k s

4 P r i n c i p l e s f o r a s s e s s i n g D e F i p r o j e c t s

It’s very difficult to pinpoint exactly what distinguishes a trustworthy
project’s smart contracts from those of a malicious one because
scams are set up in different ways at different times. Context is key.

However, it is definitely possible to follow some general security
principles that will help you to analyze smart contracts, assess a
project’s intentions and identify risks.

Your analysis should cover two main areas - smart contracts
analysis and project analysis. Within these main areas, there are a
range of things you need to look at, including everything from
suspicious functions within smart contracts to potential token
inflation and even what the project’s social media presence can tell
you about the team’s motives.

All of this is covered in this handbook and you don’t need to be a
technical expert to read it. All you need is an interest in
understanding how and why malicious actors would use certain
techniques to scam investors, as well as a willingness to weigh
these factors in context to decide how safe an investment
opportunity really is.

P r i n c i p l e s f o r a s s e s s i n g
D e F i p r o j e c t s

5 S m a r t c o n t r a c t a n a l y s i s

Every DeFi project is based on a complex system of smart
contracts. By identifying the smart contracts that exist and then
analysing some of the functions within them, you can build up a
much clearer understanding of whether the project can be trusted.

S m a r t c o n t r a c t a n a l y s i s

Ownership

When a smart contract is owned by an externally owned account
(EOA), you need to understand what functions the EOA can call.
That’s because it may be able to call functions that directly affect
the security of user funds or the project’s investment terms, such as
token minting, ownership transfer, adding new minters or changing
fees and reward rates.

If an EOA does control a smart contract, you would need to trust
this third party to act in your interests, which totally contradicts the
concept of Decentralized Finance. You should be wary of projects
where this is the case.

An example of where the contract owner can mint any number of
tokens to his EOA might look like this:

6 T h e m i n t f u n c t i o n

It is usually best to avoid centralized projects where a smart
contract owner can impose their direct influence on key functions.

As a general rule, you should choose decentralized smart contracts
that ensure smart contract owner addresses are burned (as
indicated in the example below) during contract logic
initializations, after all deployment procedures are finished.

function address uint256 public

emit

 (,) {

 (owner,);

 balances[_address] balances[_address].add(_value);

 Transfer(, _address, _value);

}

mint
"Only owner could mint"

0

_address _value
require ==

=
msg.sender

The mint function

•
•
•

As with any function, the mint function doesn't represent any
danger by itself. However, depending on the context in which it is
used, it could pose the following risks:

 Infinite minting

 New minters created

 Token inflation

All of these situations can result in token distribution promises
being broken and are explained in more detail below.

7 I n f i n i t e m i n t i n g

Infinite minting

Infinite minting represents a serious risk because it can be used by
malicious actors to mint tokens and send them to a specific
address. These minted tokens might then be sold off, leading to a
crash in the token’s value and liquidity being sucked out of all
token pairs. If you are the victim of this, you will be left with tokens
that are worthless and cannot be sold.

New minters

If an EOA can become a new minter or if an EOA can set any EOA
(including itself) as a receiver of minted tokens, funds are
endangered because tokens can be stolen and sold.

Here is an example of the addMinter function:

Token inflation

Token inflation is a distinct possibility if there is no maximum token
supply or if tokens can be minted without limitation or if token
minting is not balanced with a token burning system.

In the example below, you can see how minting new tokens is

function address uint256 internal
address

emit address

function address external

 (,) onlyMinter {

 (account (),);

 _totalSupply _totalSupply.add(amount);

 _balances[account] _balances[account].add(amount);

 Transfer((), account, amount;

}

 () onlyOwner {

 minters[newMinter] ;
}

_mint
0 "ERC20: mint to the zero address"

0

_addMinter

account amount

newMinter

require !=

=
=

= true //or minters.push(newMinter);

8 T h e m i g r a t e f u n c t i o n

limited when the total token supply reaches a hard cap:

function address uint256 internal
address

address

emit address

 (,) virtual {

 (account (),);

 _beforeTokenTransfer((), account, amount;

 _totalSupply _totalSupply.add(amount);

 (_totalSupply hardCap,);

 _balances[account] _balances[account].add(amount);

 Transfer((), account, amount);

}

_mint
0 "ERC20: mint to the zero address"

0

‘hard cap reached!’

0

account amount
require !=

=
require <=

=

function public

function uint256 public
address address

storage

uint256 address
address

address

 (IMigratorChef) onlyOwner {

 migrator _migrator;

}

 () {

 ((migrator) (),);

 PoolInfo pool poolInfo[_pid];

 IERC20 lpToken pool.lpToken;

 bal lpToken. 0f(());

 lpToken.safeApprove((migrator), bal);

 IERC20 newLpToken migrator.migrate(lpToken);

 (bal newLpToken. 0f(()),);

 pool.lpToken newLpToken;

}

setMigrator

migrate
0 "migrate: no migrator"

"migrate: bad"

_migrator

_pid

=

require !=
=

=
=

=
require ==

=

// Migrate lp token to another lp contract. Can be called by anyone.

balance this

balance this

The migrate function

This function may represent a serious risk to yield farmers because
a migration can be used by scammers to move funds from a
contract to a regular EOA address or to a separate centralized
contract. This would put all users at risk of losing their funds.

Below, you can see a code example where the migration
functionality is enabled:

9 F u n d s L o c k u p P e r i o d

Funds Lockup Period

Projects can introduce a funds lock period to prevent anyone,
including users and their team members, from unstaking their
tokens or selling them on an exchange for a certain period of time.
If a funds lock period is implemented, make sure it satisfies your
investment plans, as you won’t have access to your funds until the
period is over.

The pause function

This function allows its creator to pause a smart contract, even if
you have funds staked in it. You will not be able to access your
funds until the pause is over.

This might be risky if, for example, a smart contract vulnerability is
revealed and funds need to be transferred to a safer place. It might
also be an issue if the price of staked tokens fall on the open
market and users need to unstake tokens in order to sell, as the
pause function would mean they couldn't access their funds.

Moreover, scam projects can introduce the pause function with
other conditions that allow them to transfer funds from the contract
to their wallets.

An example of the pause function can be seen below:

function address payable external
uint256 address
emit

function external

 () onlyOwner whenNotPaused {

 _balance () ;

 TokenWithdraw(ETH_TOKEN_PLACHOLDER, _balance, _dest);

 _dest Value(_balance);

}

 () onlyOwner whenNotPaused {

 _pause();

}

withdrawEther

pause

_dest
=

.send

this .balance

/**

 * @notice Pause contract

 */

10 S u s p i c i o u s F u n c t i o n s

Suspicious Functions

A smart contract may include suspicious functions that have been
intentionally designed by the dev team to cheat users.

Poorly designed functions that can bring unexpected results
should also be considered suspicious. Technical skills are required
to review code and decide if any suspicious functions should be
considered dangerous but some examples to look out for are given
below.

Timelocks

The timelock contract or timelock conditions are added to certain
functions in order to delay a process or transaction being
performed on a blockchain. There are a few reasons why contract
deployers use them and one of the main ones is controlling token
sales on the open market.

A project might want to allow its developers to hold a big share of
tokens that have been granted as a reward. It might also want to let
investors purchase a large amount of tokens at an advantageous
price at the start of a project’s life. Both these situations pose a risk
to the token price if these holders can sell their tokens at any time.
Timelocks are applied to solve this problem, as they restrict parties
from selling tokens before a certain deadline.

Timelocks can be used as a safety measure that is imposed on

/**

 * @notice Unpause contract

 */

function external () onlyOwner whenPaused {

 _unpause();

}

unpause

11 T o k e n l o c a t i o n

smart contract functions in order to affect user funds, rewards,
depositing or withdrawing terms and other conditions. However,
timelocks don’t guarantee user safety, as they only give users time
to react to important changes.

Yield farmers should use special Telegram bots to track changes
and, if required, perform the necessary procedures to secure their
funds before changes take place. This may include unstaking funds
or withdrawing tokens to a safe place.

Token location

Always check where funds deposited by users and user rewards are
stored. They could be held by one EOA that is owned by the
project dev team or within a suspicious smart contract that gives
the team complete control over the funds.

When tokens are under centralized control such as this, the dev
team can move them anywhere and, in the worst case scenario,
steal them.

Code verification

You should check whether the analyzed smart contract code has
been verified by Etherscan, as this reflects whether the contract
bytecode matches that which is on the blockchain.

12 T o k e n D i s t r i b u t i o n

Token Distribution

If there are EOAs holding large amounts of the overall token supply
(for example, one private owner has more than 15%), there is a risk
they will sell their tokens and the price will dump. Untrustworthy
projects may send a large amount of tokens to team members
during a presale or airdrop, which may result in tokens being sold
off in this way.

13 P r o j e c t a n a l y s i s

As well as the technical analysis of smart contracts, you should also
consider a range of project features and characteristics when trying
to identify scams and malicious actors.

While some of these relate to the smart contract functions already
explored, others concern what the project is trying to achieve, who
it is run by and how they manage both internal operations and
external communications.

P r o j e c t a n a l y s i s

Governance

If a project has implemented a decentralized governance system,
users can participate in its decision making and this provides a
much safer investment environment. If users are eligible to
participate in governance, it’s important to check if the voting
proceeds on-chain or off-chain.

In off-chain governance, a decision is approved at the community
level through voting and is then integrated into the protocol’s code
by the dev team. In on-chain governance, voting rules are
hardcoded into the protocol, so any changes that are voted for are

14 D o c u m e n t a t i o n

 bridged with the code and performed automatically.

Documentation

The quality of a project’s technical documentation can say a lot
about how safe it is and whether its creators’ intentions are good or
bad.

It’s important to check if a project has a whitepaper or another
technical document describing its goals, functionality and its
system of smart contracts. If these documents only contain some
general descriptions and don't explain the project’s value or
technical specifications, this may indicate that they were developed
as a formality.

You should also assess the completeness and usefulness of code
commenting. All functions and variables must contain comments
and the comments should be helpful and easy to understand.

In general, all code released to the public should be clear and
concise, so that users can read it easily and understand what goes
on under the hood of the project. Intentionally complicated code
may be used to hide backdoors and other malicious functionality.

Finally, all basic smart contract functions must be documented
either on the project’s website or in its GitBook or GitHub.

Team and development history

The project team’s positioning, behaviour and development history
can help you understand if the project is open,
community-oriented and likely to react quickly to external warnings
about any mistakes it has made.

15 S o c i a l m e d i a p r e s e n c e

The key areas to assess in this regard are as follows:

Is it an open or an anonymous project team?

There have been many famous and successful projects built by
anonymous developers. However, it’s usually best if the project is
public, so that every team member can be verified. In general, it’s
always safer to choose public projects over anonymous ones.

Does the project include an open software repository?

Can smart contracts be easily found on the project's website, its
GitBook, or in the README of its software repository?

What is the development history of the project?

Check how the repo is, how many devs are commiting to the repo
and with what frequency.

How experienced are the project team members?

When a project is public, you should check that every team
member has good experience and skills. Inexperienced teams may
create products that have security vulnerabilities.

Do you trust the reputations of the team members?

If the project team has worked on another project in the past, it’s
important to check whether it was successful or abandoned,
scammed or managed inefficiently.

Social media presence

Projects that care about their community are always good
communicators and publish frequent development updates. A
project’s social media, blog, website and other communication
channels should be active and regularly updated.

Avoid projects that don’t provide complete information and ignore
user questions or requests. If a project offers strange promotions or

16 M i x e r s f o r s m a r t c o n t r a c t d e p l o y m e n t

makes suspicious promises, these are warning signs that it should
be avoided.

Mixers for smart contract deployment

Untrustworthy projects can use mixers like Tornado cash for money
laundering, as well as to pay for deployment of smart contracts, in
order to cover their tracks.

Uniqueness

Before investing in a new project, try to understand the yield
farming approach it offers and what value it brings. If there are no
innovative ideas behind the project and it doesn’t offer any
improvements compared to established DeFi projects, there is
usually little reason to invest.

17 A u t o m a t i n g y o u r D e F i s e c u r i t y a n a l y s i s

DEFIYIELD will release an automatic smart contract scanning
system called Safe soon. It is based on machine learning
technology and is capable of auditing smart contracts deployed on
Ethereum, Binance Smart Chain and other chains.

We designed Safe because we know that manual smart contract
verification is not easy. By using it, you can simply enter a
smart-contract address and see a highly accurate security score
that the system produces from an in-depth analysis.

Even when you start using DEFIYIELD Safe though, you should
always do your own due diligence and review smart contracts
audits that have been conducted by professionals.

Remembering to follow a whole range of security checks is
important because no single safety solution is enough. For
example, even when a project has been audited by professionals, it
doesn’t mean the project is completely safe.

It is still possible for users to be scammed by a project after an
audit has been performed. That’s because the audit is only correct
on the day it was published and a team can introduce malicious
code changes afterwards.

A u t o m a t i n g y o u r

D e F i s e c u r i t y a n a l y s i s

18 A u t o m a t i n g y o u r D e F i s e c u r i t y a n a l y s i s

You can learn more by reviewing the security audits that DEFIYIELD
has performed on various yield farming projects. Plus, if you want
to check whether a project you are interested in is trustworthy, you
can request a DEFIYIELD audit. Once enough people in the
community have requested an audit, we will go ahead with it.

And finally…

Don’t forget to join the best yield farming community via your
preferred channel:

Telegram:
Twitter:

https://t.me/defiyield_app

https://twitter.com/defiyield_app

https://t.me/defiyield_app
https://twitter.com/defiyield_app

